CSE 5526: Introduction to Neural Networks

Unsupervised Learning

Types of learning

- Supervised learning: Detailed desired output is provided externally
- Reinforcement learning: Evaluative output is provided externally
 - It is sometimes considered a form of supervised learning (reward/penalty)
- Unsupervised learning, comprising competitive learning and self organization

Competitive dynamics

- Winner-take-all (WTA) networks implement competitive dynamics
- Two different architectures of WTA Global inhibition:

WTA networks

• Two different architectures of WTA Mutual inhibition

WTA networks (cont.)

- External input sets the initial conditions of neurons. Under certain conditions, only the neuron with the largest input reaches 1 and all the other neurons reach 0
 - Thus WTA is a maximum selector, a parallel implementation of MAX operation

Self-organizing maps (SOM)

• Maps are commonly found in the brain: retinotopic map, tonotopic map, somatosensory (tactile) map, etc.

Part VI

Self-organizing maps (SOM)

• Maps are commonly found in the brain: retinotopic map, tonotopic map, somatosensory (tactile) map, etc.

Self-organizing feature maps

 Competition and local cooperation along with synaptic plasticity can produce such maps.

SOM architecture

• Architecture: One layer with recurrent connections

SOM (cont.)

- Question: how to represent the input space by output neurons through training?
- The idea is to adjust the weight vectors of the winning neuron (via WTA competition) and its neighboring neurons, to make them closer to the input vector

Learning rule

Weight update

$$\mathbf{w}_j(n+1) = \mathbf{w}_j(n) + \eta(n)h_{j,i(\mathbf{x})}(n)[\mathbf{x}(n) - \mathbf{w}_j(n)]$$

where $i(\mathbf{x})$ indicates the winning neuron, and $h_{j,i}$ denotes a neighborhood function centered at neuron i

• A typical choice for $h_{i,i}$ is a Gaussian function

$$h_{j,i}(n) = \exp[-\frac{d_{j,i}^2}{2\sigma^2(n)}]$$

where $d_{j,i}$ denotes the Euclidean distance between neuron j and i on the output layer

Neighborhood function

• To ensure convergence, both η and σ need to decrease gradually

Competitive learning

• For the special case of a neighborhood function that includes just the winning neuron, SOM reduces to competitive learning:

$$\Delta \mathbf{w}_j = \eta y_j (\mathbf{x} - \mathbf{w}_j)$$

Here y_j is the (binary) response of neuron j

Competitive learning illustration

Competitive learning implements an online version of K-means clustering

Two phases of SOM training

- Ordering phase: This phase is to achieve topological ordering of weight vectors by adapting $\sigma(n)$ and $\eta(n)$
- One approach is to set

$$\sigma(n) = \sigma_0 (1 - \frac{n}{N_0})$$

where σ_0 is the initial (large) Gaussian width and N_0 is the number of iterations for the phase

$$\eta(n) = \eta_0 (1 - \frac{n}{N_0 + K})$$

Here η_0 is the initial learning rate and K is another parameter

Two phases of training (cont.)

• Alternatively, we can set $\sigma(n)$ and $\eta(n)$ as given in textbook

$$\sigma(n) = \sigma_0 \exp(-\frac{n}{\tau_1})$$

$$\eta(n) = \eta_0 \exp(-\frac{n}{\tau_2})$$

where τ_1 and τ_2 are called time constants

Two phases of training (cont.)

- Convergence phase. This phase fine-tunes the output neurons to match the input distribution
- For the convergence phase, $h_{j,i}(n)$ should contain just the nearest neighbors, which may reduce to one neuron. η should be small.

Properties of SOM

- Input space approximation
- Topological ordering

• **Remark**: SOM gives an online version of vector quantization

SOM illustrations

SOM illustrations (cont.)

SOM illustrations (cont.)

Part VI

SOM illustrations (cont.)

Part VI