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CSE 5526: Introduction to Neural Networks

Support Vector Machines 
(SVM)
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Motivation

• For a linearly separable classification task, there are 
generally infinitely many separating hyperplanes. Perceptron 
learning, however, stops as soon as one of them is reached

• To improve generalization, we want to place a decision 
boundary as far away from training classes as possible. In 
other words, place the boundary at equal distances from 
class boundaries



Optimal hyperplane
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Decision boundary

• Given a linear discriminant function
𝑔𝑔 𝐱𝐱 = 𝐰𝐰𝑇𝑇𝐱𝐱 + 𝑏𝑏 = 0

• To find its distance to a given pattern 𝐱𝐱, project 𝐱𝐱 onto the 
decision boundary:
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Decision boundary (cont.)

𝐱𝐱 = 𝐱𝐱𝑝𝑝 + 𝑟𝑟
𝐰𝐰

| 𝐰𝐰 |

where 𝐱𝐱𝑝𝑝 is 𝐱𝐱’s projection and the second term arises from the fact that 
the weight vector is perpendicular to the decision boundary. The 
algebraic distance 𝑟𝑟 is positive if 𝐱𝐱 is on the positive side of the 
boundary and negative if 𝐱𝐱 is on the negative side
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Decision boundary (cont.)

Then
𝑔𝑔(𝐱𝐱) = 𝑔𝑔(𝐱𝐱𝑝𝑝 + 𝑟𝑟

𝐰𝐰
𝐰𝐰

)

= 𝐰𝐰𝑇𝑇(𝐱𝐱𝑝𝑝+𝑟𝑟
𝐰𝐰
𝐰𝐰

) + 𝑏𝑏

= 𝐰𝐰𝑇𝑇𝐱𝐱𝑝𝑝 + 𝑏𝑏 + 𝑟𝑟 𝐰𝐰
= 𝑟𝑟 𝐰𝐰
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Decision boundary (cont.)

Thus

𝑟𝑟 =
𝑔𝑔(x)
𝐰𝐰

• As a special case, for the origin, 𝑟𝑟 = 𝑏𝑏
𝐰𝐰

, as discussed before
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Margin of separation

• The margin of separation is the smallest distance of the 
hyperplane to a data set. Equivalently, the margin is the 
distance to the nearest data points

• The training patterns closest to the optimal hyperplane are 
called support vectors
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Finding optimal hyperplane for linearly 
separable problems

• Question: Given N pairs of input and desired output           
< 𝐱𝐱𝑖𝑖 ,𝑑𝑑𝑖𝑖 >, how to find 𝐰𝐰𝑜𝑜 and 𝑏𝑏𝑜𝑜 for the optimal 
hyperplane?

• Without loss of generality, 𝐰𝐰𝑜𝑜 and 𝑏𝑏𝑜𝑜 must satisfy 

𝐰𝐰𝑜𝑜
𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏𝑜𝑜 ≥ 1 for 𝑑𝑑𝑖𝑖 = 1

𝐰𝐰𝑜𝑜
𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏𝑜𝑜 ≤ −1 for 𝑑𝑑𝑖𝑖 = −1

or 𝑑𝑑𝑖𝑖(𝐰𝐰𝑜𝑜
𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏𝑜𝑜) ≥ 1

where the equality holds for support vectors only
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Optimal hyperplane

• For a support vector 𝐱𝐱(𝑠𝑠) , its algebraic distance to the 
optimal hyperplane:

𝑟𝑟 =
𝑔𝑔(𝐱𝐱(𝑠𝑠))
| 𝐰𝐰𝑜𝑜 |

=

1
| 𝐰𝐰𝑜𝑜 |

if 𝑑𝑑(𝑠𝑠) = 1

−1
| 𝐰𝐰𝑜𝑜 |

if 𝑑𝑑(𝑠𝑠) = −1

• Thus the margin of separation:

|𝑟𝑟| =
1

| 𝐰𝐰𝑜𝑜 |
• In other words, maximizing the margin of separation is 

equivalent to minimizing ||𝐰𝐰𝑜𝑜||
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Primal problem

• Therefore 𝐰𝐰𝑜𝑜 and 𝑏𝑏𝑜𝑜 satisfy

𝑑𝑑𝑖𝑖 𝐰𝐰 𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏 ≥ 1 for 𝑖𝑖 = 1, … ,𝑁𝑁

and Φ 𝐰𝐰 = 1
2
𝐰𝐰𝑇𝑇𝐰𝐰 is minimized

• The above constrained minimization problem is called the primal
problem
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Lagrangian formulation

• Using Lagrangian formulation, we construct the Lagrangian 
function:

𝐽𝐽 𝐰𝐰,𝑏𝑏,𝛼𝛼 =
1
2
𝐰𝐰𝑇𝑇𝐰𝐰−�

𝑖𝑖=1

𝑁𝑁

𝛼𝛼𝑖𝑖[𝑑𝑑𝑖𝑖 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏 − 1]

where nonnegative variables, 𝛼𝛼𝑖𝑖’s, are called Lagrange multipliers
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Lagrangian formulation (cont.)

• The solution is a saddle point, minimized with respect to 𝐰𝐰
and 𝑏𝑏, but maximized with respect to 𝛼𝛼

Condition 1:
𝜕𝜕𝐽𝐽 𝐰𝐰, 𝑏𝑏,𝛼𝛼

𝜕𝜕𝐰𝐰
= 𝟎𝟎

Condition 2:
𝜕𝜕𝐽𝐽 𝐰𝐰, 𝑏𝑏,𝛼𝛼

𝜕𝜕𝑏𝑏
= 0
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Lagrangian formulation (cont.)

• From condition 1: 

𝐰𝐰−�
𝑖𝑖

𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝐱𝐱𝑖𝑖 = 𝟎𝟎

or 𝐰𝐰 = ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝐱𝐱𝑖𝑖

• From condition 2: 

∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖 = 0
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𝐽𝐽 𝐰𝐰, 𝑏𝑏,𝛼𝛼 =
1
2
𝐰𝐰𝑇𝑇𝐰𝐰−�

𝑖𝑖=1

𝑁𝑁

𝛼𝛼𝑖𝑖[𝑑𝑑𝑖𝑖 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏 − 1]



Karush-Kuhn-Tucker conditions

• Remark: The above constrained optimization problem 
satisfies:

𝛼𝛼𝑖𝑖 𝑑𝑑𝑖𝑖 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏 − 1 = 0

called Karush-Kuhn-Tucker conditions

• In other words, 𝛼𝛼𝑖𝑖 = 0 when 𝑑𝑑𝑖𝑖 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏 − 1 > 0
• 𝛼𝛼𝑖𝑖 can be greater than 0 only when 𝑑𝑑𝑖𝑖 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏 − 1 = 0, that is, 

for support vectors
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𝐽𝐽 𝐰𝐰, 𝑏𝑏,𝛼𝛼 =
1
2
𝐰𝐰𝑇𝑇𝐰𝐰−�

𝑖𝑖=1

𝑁𝑁

𝛼𝛼𝑖𝑖[𝑑𝑑𝑖𝑖 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏 − 1]



How to find α? 

• The primal problem has a corresponding dual problem in 
terms of α. From the Lagrangian

𝐽𝐽 𝐰𝐰,𝑏𝑏,𝛼𝛼 =
1
2
𝐰𝐰𝑇𝑇𝐰𝐰 −�

𝑖𝑖

𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 − 𝑏𝑏�
𝑖𝑖

𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖 + �
𝑖𝑖

𝛼𝛼𝑖𝑖
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𝐽𝐽 𝐰𝐰, 𝑏𝑏,𝛼𝛼 =
1
2
𝐰𝐰𝑇𝑇𝐰𝐰−�

𝑖𝑖=1

𝑁𝑁

𝛼𝛼𝑖𝑖[𝑑𝑑𝑖𝑖 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏 − 1]



How to find α (cont.) 

• Because of the two conditions, the third term is zero and

𝐰𝐰𝑇𝑇𝐰𝐰 = �
𝑖𝑖

𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖

Hence 

𝑄𝑄 𝛼𝛼 = �
𝑖𝑖

𝛼𝛼𝑖𝑖 −
1
2
�
𝑖𝑖

�
𝑗𝑗

𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗𝐱𝐱𝑖𝑖𝑇𝑇𝐱𝐱𝑗𝑗
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𝐽𝐽 𝐰𝐰, 𝑏𝑏,𝛼𝛼 =
1
2
𝐰𝐰𝑇𝑇𝐰𝐰−�

𝑖𝑖

𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 − 𝑏𝑏�
𝑖𝑖

𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖 + �
𝑖𝑖

𝛼𝛼𝑖𝑖



Dual problem

• The dual problem is stated as follows:
The Lagrange multipliers maximize

𝑄𝑄 𝛼𝛼 = �
𝑖𝑖

𝛼𝛼𝑖𝑖 −
1
2
�
𝑖𝑖

�
𝑗𝑗

𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗𝐱𝐱𝑖𝑖𝑇𝑇𝐱𝐱𝑗𝑗

subject to 
(1) ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖 = 0
(2) 𝛼𝛼𝑖𝑖 ≥ 0

• The dual problem can be solved as a quadratic optimization problem. 
Note that 𝛼𝛼𝑖𝑖 > 0 only for support vectors

Part V 18



Solution

• Having found optimal multipliers, 𝛼𝛼𝑜𝑜,𝑖𝑖

𝐰𝐰𝑜𝑜 = �
𝑖𝑖=1

𝑁𝑁𝑠𝑠

𝛼𝛼𝑜𝑜,𝑖𝑖𝑑𝑑𝑖𝑖𝐱𝐱𝑖𝑖

where 𝑁𝑁𝑠𝑠 is the number of support vectors
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Solution (cont.)

• For any support vector 𝐱𝐱(𝑠𝑠), we have 

𝑑𝑑 𝑠𝑠 𝐰𝐰𝑜𝑜
𝑇𝑇𝐱𝐱 𝑠𝑠 + 𝑏𝑏𝑜𝑜 = 1

𝑏𝑏𝑜𝑜 =
1
𝑑𝑑 𝑠𝑠 − 𝐰𝐰𝑜𝑜

𝑇𝑇𝐱𝐱 𝑠𝑠 =
1
𝑑𝑑 𝑠𝑠 −�

𝑖𝑖=1

𝑁𝑁𝑠𝑠

𝛼𝛼𝑜𝑜,𝑖𝑖𝑑𝑑𝑖𝑖𝐱𝐱𝑖𝑖𝑇𝑇𝐱𝐱 𝑠𝑠

• Note that for robustness, one should average over all support vectors 
to compute 𝑏𝑏𝑜𝑜
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Linearly inseparable problems

• How to find optimal hyperplanes for linearly inseparable 
cases?

• For such problems, the condition

𝑑𝑑𝑖𝑖 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏 ≥ 1 for 𝑖𝑖 = 1, … ,𝑁𝑁

is violated. In such cases, the margin of separation is 
called soft.

Part V 21



Linearly inseparable cases
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Slack variables

• To extend the constrained optimization framework, we 
introduce a set of nonnegative variables, ξ𝑖𝑖(𝑖𝑖 = 1, … ,𝑁𝑁), 
called slack variables, into the condition:

𝑑𝑑𝑖𝑖 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏 ≥ 1 − ξ𝑖𝑖 for 𝑖𝑖 = 1, … ,𝑁𝑁

• For 0 < ξ𝑖𝑖 ≤ 1, 𝐱𝐱𝑖𝑖 falls into the region of separation, but on the 
correct side of the decision boundary

• For ξ𝑖𝑖 > 1, 𝐱𝐱𝑖𝑖 falls on the wrong side
• The equality holds for support vectors, no matter whether ξ𝑖𝑖 > 0 or 
ξ𝑖𝑖 = 0. Thus, linearly separable problems can be treated as a special 
case
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Classification error

• In general, the goal is to minimize the classification error:

Φ ξ = �
𝑖𝑖

𝐼𝐼(ξ𝑖𝑖 − 1)

where 𝐼𝐼 ξ = �0 if ξ ≤ 0
1 if ξ > 0
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Classification error

• To turn the above problem into a convex optimization 
problem with respect to 𝐰𝐰 and 𝑏𝑏, we minimize instead

Φ ξ = �
𝑖𝑖

ξ𝑖𝑖
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Classification error (cont.)

• Adding the term to the minimization of 𝐰𝐰 , we have

Φ 𝐰𝐰, ξ =
1
2
𝐰𝐰𝑇𝑇𝐰𝐰 + 𝐶𝐶�

𝑖𝑖

ξ𝑖𝑖

• The parameter 𝐶𝐶 controls the tradeoff between minimizing the 
classification error and maximizing the margin of separation. 𝐶𝐶 has 
to be chosen by the user, reflecting the confidence on the training 
sample 
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Primal problem for linearly inseparable case

• The primal problem becomes:
Find optimal 𝐰𝐰𝑜𝑜 and 𝑏𝑏𝑜𝑜 so that

𝑑𝑑𝑖𝑖 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏 ≥ 1 − ξ𝑖𝑖 for 𝑖𝑖 = 1, … ,𝑁𝑁
ξ𝑖𝑖 ≥ 0

and

Φ 𝐰𝐰, ξ =
1
2
𝐰𝐰𝑇𝑇𝐰𝐰 + 𝐶𝐶�

𝑖𝑖

ξ𝑖𝑖

is minimized
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Lagrangian formulation

• Again using Lagrangian formulation,

𝐽𝐽 𝐰𝐰,𝑏𝑏, ξ,𝛼𝛼, 𝜇𝜇

=
1
2
𝐰𝐰𝑇𝑇𝐰𝐰 + 𝐶𝐶�

𝑖𝑖

ξ𝑖𝑖 −�
𝑖𝑖

𝛼𝛼𝑖𝑖 𝑑𝑑𝑖𝑖 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑏𝑏 − 1 + ξ𝑖𝑖

−�
𝑖𝑖

𝜇𝜇𝑖𝑖ξ𝑖𝑖

with nonnegative Lagrange multipliers 𝛼𝛼𝑖𝑖’s and 𝜇𝜇𝑖𝑖’s
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Dual problem for linearly inseparable case

• By a similar derivation, the dual problem is to find 𝛼𝛼𝑖𝑖’s to 
maximize

𝑄𝑄 𝛼𝛼 = �
𝑖𝑖

𝛼𝛼𝑖𝑖 −
1
2
�
𝑖𝑖

�
𝑗𝑗

𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗𝐱𝐱𝑖𝑖𝑇𝑇𝐱𝐱𝑗𝑗

subject to 
(1) ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖 = 0
(2) 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶
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Solution

• The dual problem contains neither ξ𝑖𝑖 nor μ𝑖𝑖, and is the same 
as for the linearly separable case, except for the more 
stringent constraint 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶. So it can be solved as a 
quadratic optimization problem
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Solution (cont.)

• With optimal multipliers found,

𝐰𝐰𝑜𝑜 = �
𝑖𝑖=1

𝑁𝑁𝑠𝑠

𝛼𝛼𝑜𝑜,𝑖𝑖𝑑𝑑𝑖𝑖𝐱𝐱𝑖𝑖

• Due to the Karush-Kuhn-Tucker conditions, for any 0 <
𝛼𝛼𝑖𝑖 < 𝐶𝐶, ξ𝑖𝑖 must be zero, corresponding to a support vector. 
Hence 𝑏𝑏𝑜𝑜 can be computed in the same way as for linearly 
separable cases for such 𝛼𝛼𝑖𝑖
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SVM as a kernel machine

• Cover’s theorem: A complex classification problem, cast in 
a high-dimensional space nonlinearly, is more likely to be 
linearly separable than in the low-dimensional input space

• SVM for pattern classification
1. Nonlinear mapping of the input space onto a high-dimensional 

feature space
2. Constructing the optimal hyperplane for the feature space
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Kernel machine illustration
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Inner product kernel

• Let 𝜑𝜑𝑗𝑗 𝐱𝐱 , 𝑗𝑗 = 1, … ,∞, denote a set of nonlinear mapping 
functions onto the feature space

• Without loss of generality, set 𝑏𝑏 = 0. For a given weight 
vector 𝐰𝐰𝑇𝑇, the discriminant function is

�
𝑗𝑗=1

∞

𝑤𝑤𝑗𝑗𝜑𝜑𝑗𝑗(𝐱𝐱) = 𝐰𝐰𝑇𝑇𝛟𝛟 𝐱𝐱 = 0
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Inner product kernel (cont.)

• Treating the feature space as input to an SVM, we have

𝐰𝐰 = �
𝑖𝑖=1

𝑁𝑁𝑠𝑠

𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝛟𝛟 𝐱𝐱𝑖𝑖

• Then the optimal hyperplane becomes

�
𝑖𝑖=1

𝑁𝑁𝑠𝑠

𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝛟𝛟𝑇𝑇(𝐱𝐱𝑖𝑖)𝛟𝛟 𝐱𝐱 = 0
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Optimal hyperplane

• Denote the inner product of the mapping functions as

𝑘𝑘 𝐱𝐱, 𝐱𝐱𝑖𝑖 = 𝛟𝛟𝑇𝑇 𝐱𝐱𝑖𝑖 𝛟𝛟 𝐱𝐱

= �
𝑗𝑗=1

∞

𝜑𝜑𝑗𝑗 𝐱𝐱𝑖𝑖 𝜑𝜑𝑗𝑗 𝐱𝐱 , 𝑖𝑖 = 1, … ,𝑁𝑁

• Then we have

�
𝑖𝑖=1

𝑁𝑁𝑠𝑠

𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝑘𝑘 𝐱𝐱, 𝐱𝐱𝑖𝑖 = 0

Part V 36



Kernel trick

• Function 𝑘𝑘 𝐱𝐱, 𝐱𝐱𝒊𝒊 is called an inner-product kernel, 
satisfying the condition 𝑘𝑘 𝐱𝐱, 𝐱𝐱𝑖𝑖 = 𝑘𝑘 𝐱𝐱𝑖𝑖 , 𝐱𝐱

• Kernel trick: For pattern classification in the output space, 
specifying the kernel 𝑘𝑘 𝐱𝐱, 𝐱𝐱𝑖𝑖 is sufficient. That is, no need 
to train 𝐰𝐰
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Kernel matrix

• The matrix

𝐊𝐊 =

𝑘𝑘(𝐱𝐱1, 𝐱𝐱1) ⋯
⋮

𝑘𝑘(𝐱𝐱1, 𝐱𝐱𝑁𝑁)

… 𝑘𝑘(𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗) …

𝑘𝑘(𝐱𝐱𝑁𝑁, 𝐱𝐱1)
⋮
… 𝑘𝑘(𝐱𝐱𝑁𝑁 , 𝐱𝐱𝑁𝑁)

is called the kernel matrix, or the Gram matrix. K is 
positive, semidefinite

Part V 38



Remarks

• Even though the feature space could be of infinite 
dimensionality, the optimal hyperplane for classification has 
a finite number of terms that is equal to the number of 
support vectors in the feature space

• Mercer’s theorem (see textbook) specifies the conditions for 
a candidate kernel to be an inner-product kernel, admissible 
for SVM
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SVM design

• Given N pairs of input and desired output < 𝐱𝐱𝑖𝑖 ,𝑑𝑑𝑖𝑖 >, find 
the Lagrange multipliers, 𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑁𝑁, by maximizing the 
objective function:

𝑄𝑄 𝛼𝛼 = �
𝑖𝑖

𝛼𝛼𝑖𝑖 −
1
2
�
𝑖𝑖

�
𝑗𝑗

𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗𝑘𝑘(𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗)

subject to 
(1) ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖 = 0
(2) 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶
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SVM design (cont.)

• The above dual problem has the same form as for linearly 
inseparable problems except for the substitution of 𝑘𝑘(𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗)
for 𝐱𝐱𝑖𝑖𝑇𝑇𝐱𝐱𝑗𝑗
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Optimal hyperplane

Part V 42

 The middle layer depicts inner-
product kernels, not mapping 
functions

 𝑚𝑚1 denotes the number of 
support vectors  



Typical kernels

1. Polynomial kernel:

(𝐱𝐱𝑇𝑇𝐱𝐱𝑖𝑖 + 1)𝑝𝑝

• p is a parameter

2. RBF kernels: 

exp(−
1

2𝜎𝜎2
||𝐱𝐱 − 𝐱𝐱𝑖𝑖||2)

• 𝜎𝜎 is a parameter common to all kernels
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Typical kernels (cont.)

3. Hyperbolic tangent kernel (two-layer perceptron): 

tanh(𝛽𝛽0𝐱𝐱𝑇𝑇𝐱𝐱𝑖𝑖 + 𝛽𝛽1)

• only certain values of 𝛽𝛽0 and 𝛽𝛽1 satisfy Mercer’s theorem

• Note that SVM theory avoids the need for heuristics in RBF 
and MLP design, and guarantees a measure of optimality
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Example: XOR problem again

Part V 45

• See blackboard



SVM summary

• SVM builds on strong theoretical foundations, eliminating 
the need for much user design

• SVM produces very good results for classification, and is the 
kernel method of choice

• Computational complexity (both time & memory) increases 
quickly with the size of the training sample
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