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CSE 5526: Introduction to Neural Networks

Recurrent Networks



Motivation

• Conventional neural networks have a fixed number of input 
dimensions and outputs

• Sequences often have variable lengths in which the different 
items (dimensions) of the sequence are related to one another
• Words in a sentence
• Values in a time series
• Biological sequences

• Recurrent neural networks (RNNs) address such tasks
• RNNs take the previous outputs or hidden states as inputs
• The composite input at time t provides historical information about 

the activities prior to t
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Classical dynamical systems

• Consider the classical form of a dynamical system:

𝒔𝒔(𝑡𝑡) = 𝑓𝑓(𝒔𝒔 𝑡𝑡−1 ;𝜽𝜽)

• 𝒔𝒔(𝑡𝑡): the state of the system at t
• 𝜽𝜽: the parameters of the system
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Unfolding computations

• There are many ways to create recurrent connections
• A recurrent network with no output

𝒉𝒉(𝑡𝑡) = 𝑓𝑓(𝒉𝒉 𝑡𝑡−1 ,𝒙𝒙 𝑡𝑡 ;𝜽𝜽)
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Recurrent hidden units

• y: desired output 
• L: loss (cost)
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A typical RNN cell

• 𝒉𝒉(𝑡𝑡) = tanh 𝑾𝑾𝒉𝒉 𝑡𝑡−1 + 𝑼𝑼𝒙𝒙 𝑡𝑡 + 𝒃𝒃
= tanh( 𝒗𝒗 𝑡𝑡 )

• 𝒐𝒐(𝑡𝑡) = 𝑽𝑽𝒉𝒉 𝑡𝑡 + 𝒄𝒄
• �𝒚𝒚(𝑡𝑡) = softmax(𝒐𝒐(𝑡𝑡))

• 𝒃𝒃, 𝒄𝒄: bias vectors

• softmax(𝒗𝒗𝑖𝑖) = exp(𝑣𝑣𝑖𝑖)
∑𝑗𝑗 exp(𝑣𝑣𝑗𝑗)
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Recurrent hidden units (cont.)

• Treat the unfolded 
network as one big 
feedforward network

• This big network takes 
in an entire sequence 
as input

• Compute gradients 
through usual 
backpropagation

• Update shared weights
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Recurrence through output only
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Sequence input, single output
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Teacher forcing
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Hidden and output recurrence

• The output values are not forced to be conditionally independent 
in this model
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Bidirectional RNN
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Deep RNNs
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RNN training

• Essentially, an RNN cell is copied over time (unrolling or 
unfolding), with different inputs at different time steps
• The weights are shared over time

• Key difference from traditional backpropagation is the use of 
shared parameters
• Pretend that the weights are not shared and apply normal 

backpropagation to compute the gradients with respect to each copy 
of the weights

• Summate (or average) the gradients over the various copies of each 
weight copy

• Perform gradient descent update

• This algorithm is referred to as backpropagation through 
time (BPTT)
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Exploding and vanishing gradients

• Backpropagated partial derivatives get multiplied by weights 
and derivatives of activation functions

• Unless the values are exactly one, these partial derivatives 
either continuously increase (explode) or decrease (vanish)

• Exploding gradients: gradient clipping, i.e. scaling a gradient 
if its magnitude is too large

• Vanishing gradients: changing RNN architecture
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Gradient clipping illustration

• Without clipping: Gradient descent overshoots the bottom of a small ravine, and 
then receives a very large gradient from the cliff surface. The large gradient 
drives the parameters outside the plot, far away from the solution

• With clipping: Gradient descent has a moderate reaction to the cliff. While it 
does ascend the cliff surface, the step size is restricted so that it cannot be driven 
away from the steep region near the solution
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RNN with long short-term memory

• With vanishing gradients, it is difficult to train RNNs to solve 
problems that require learning long-term temporal 
dependencies

• The most effective solution currently is gated RNNs, as 
exemplified by the long short-term memory (LSTM) 
architecture
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LSTM unit
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• An LSTM unit (cell) includes 
“memory” to maintain information 
for long periods of time

• A set of gates is used to control 
when information enters the 
memory, when it is output, and 
when it is forgotten

• f: forget gate, how much to erase 
• i: input gate, how much to write 

to the unit
• a: input activation
• o: output gate, how much to 

output
• c: cell state vector

• This architecture lets the unit learn 
longer-term dependencies
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LSTM: Forward pass

• Input and gate computation
𝒂𝒂(𝑡𝑡) = tanh 𝑾𝑾𝑎𝑎𝒉𝒉 𝑡𝑡−1 + 𝑼𝑼𝑎𝑎𝒙𝒙 𝑡𝑡 + 𝒃𝒃𝑎𝑎 = tanh(𝒗𝒗𝑎𝑎

(𝑡𝑡))

𝒊𝒊(𝑡𝑡) = σ(𝑾𝑾𝑖𝑖𝒉𝒉 𝑡𝑡−1 + 𝑼𝑼𝑖𝑖𝒙𝒙 𝑡𝑡 + 𝒃𝒃𝑖𝑖)= σ(𝒗𝒗𝑖𝑖
(𝑡𝑡))

𝒇𝒇(𝑡𝑡) = σ 𝑾𝑾𝑓𝑓𝒉𝒉 𝑡𝑡−1 + 𝑼𝑼𝑓𝑓𝒙𝒙 𝑡𝑡 + 𝒃𝒃𝑓𝑓 = σ(𝒗𝒗𝑓𝑓
(𝑡𝑡))

𝒐𝒐(𝑡𝑡) = σ(𝑾𝑾𝑜𝑜𝒉𝒉 𝑡𝑡−1 + 𝑼𝑼𝑜𝑜𝒙𝒙 𝑡𝑡 + 𝒃𝒃𝑜𝑜)= σ(𝒗𝒗𝑜𝑜
(𝑡𝑡))

• σ indicates a sigmoid

In other words

𝒗𝒗(𝑡𝑡) =

𝒗𝒗𝑎𝑎
(𝑡𝑡)

𝒗𝒗𝑖𝑖
(𝑡𝑡)

𝒗𝒗𝑓𝑓
(𝑡𝑡)

𝒗𝒗𝑜𝑜
(𝑡𝑡)

=

𝑾𝑾𝑎𝑎 𝑼𝑼𝑎𝑎
𝑾𝑾𝑖𝑖 𝑼𝑼𝑖𝑖
𝑾𝑾𝑓𝑓 𝑼𝑼𝑓𝑓
𝑾𝑾𝑜𝑜 𝑼𝑼𝑜𝑜

𝒉𝒉 𝑡𝑡−1

𝒙𝒙 𝑡𝑡 + 

𝒃𝒃𝑎𝑎
𝒃𝒃𝑖𝑖
𝒃𝒃𝑓𝑓
𝒃𝒃𝑜𝑜

= 𝑾𝑾𝑰𝑰 𝑡𝑡 +𝒃𝒃
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LSTM: Forward pass (cont.)

• Memory update: the state of the unit is 
updated to the latest values

𝒄𝒄(𝑡𝑡) = 𝒇𝒇(𝑡𝑡)⨀𝒄𝒄 𝑡𝑡−1 + 𝒊𝒊(𝑡𝑡)⨀𝒂𝒂(𝑡𝑡)

• Symbol ⨀ denotes elementwise product
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LSTM: Forward pass (cont.)

• Output: finally, the LSTM 
unit computes an output value 
by applying an activation 
function (nonlinearity) to the 
updated state value

𝒉𝒉(𝑡𝑡) = 𝒐𝒐(𝑡𝑡)⨀tanh(𝒄𝒄(𝑡𝑡))
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LSTM: Backward pass
• The cell state at time t, 𝒄𝒄(𝑡𝑡), receives 

gradients from 𝒉𝒉(𝑡𝑡) as well as the next 
cell state 𝒄𝒄(𝑡𝑡+1). At time step t, these 
two gradients are accumulated before 
being backpropagated to the layers 
below the cell and the previous time 
steps
• Forward pass: 𝒉𝒉(𝑡𝑡) = 𝒐𝒐(𝑡𝑡)⨀tanh(𝒄𝒄(𝑡𝑡))

• Given ∇𝐸𝐸(𝒉𝒉(𝑡𝑡)) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝒉𝒉(𝑡𝑡), find ∇𝐸𝐸(𝒄𝒄(𝑡𝑡))

Thus ∇𝐸𝐸(𝒄𝒄(𝑡𝑡)) += ∇𝐸𝐸(𝒉𝒉(𝑡𝑡))⨀ 𝒐𝒐 𝑡𝑡 ⨀�1 −
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Symbol += indicates this gradient is added to the 
gradient from (t+1) (i.e. gradient accumulation)

𝜕𝜕𝐸𝐸

𝜕𝜕𝑐𝑐𝑖𝑖
(𝑡𝑡) =

𝜕𝜕𝐸𝐸

𝜕𝜕ℎ𝑖𝑖
(𝑡𝑡)
𝜕𝜕ℎ𝑖𝑖

𝑡𝑡

𝜕𝜕𝑐𝑐𝑖𝑖
𝑡𝑡 = ∇𝐸𝐸(ℎ𝑖𝑖

𝑡𝑡 )𝑜𝑜𝑖𝑖
𝑡𝑡 1 − tanh2 𝑐𝑐𝑖𝑖

𝑡𝑡

∇𝐸𝐸(ℎ(𝑡𝑡))



Summary

• RNNs are uniquely suited for sequence modeling and 
temporal (dynamical) tasks 

• RNN training is more difficult than training a feedforward 
net

• Gated RNNs, particularly RNNs with LSTM, are very 
successful in real world applications
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