
Part X 1

CSE 5526: Introduction to Neural Networks

Recurrent Networks

Motivation

• Conventional neural networks have a fixed number of input
dimensions and outputs

• Sequences often have variable lengths in which the different
items (dimensions) of the sequence are related to one another
• Words in a sentence
• Values in a time series
• Biological sequences

• Recurrent neural networks (RNNs) address such tasks
• RNNs take the previous outputs or hidden states as inputs
• The composite input at time t provides historical information about

the activities prior to t

Part X 2

Classical dynamical systems

• Consider the classical form of a dynamical system:

𝒔𝒔(𝑡𝑡) = 𝑓𝑓(𝒔𝒔 𝑡𝑡−1 ;𝜽𝜽)

• 𝒔𝒔(𝑡𝑡): the state of the system at t
• 𝜽𝜽: the parameters of the system

Part X 3

s(t—1) s(t) s(t+1)

f
s(...) s(...)

f f f

Unfolding computations

• There are many ways to create recurrent connections
• A recurrent network with no output

𝒉𝒉(𝑡𝑡) = 𝑓𝑓(𝒉𝒉 𝑡𝑡−1 ,𝒙𝒙 𝑡𝑡 ;𝜽𝜽)

Part X 4

f

h h(t—1) h(t) h(t+1)

x(t—1) x(t) x(t+1)

h(...) h(...)

f

Unfold
f f f

Recurrent hidden units

• y: desired output
• L: loss (cost)

Part X 5

U

V
W

o(t—1)

h

y

L

o(t) o(t+1)

L(t—1) L(t) L(t+1)

y(t—1) y(t) y(t+1)

h(t—1) h(t) h(t+1)

x(t—1) x(t) x(t+1)

WW W W
h(...) h(...)

V V V

U U U

Unfold

A typical RNN cell

• 𝒉𝒉(𝑡𝑡) = tanh 𝑾𝑾𝒉𝒉 𝑡𝑡−1 + 𝑼𝑼𝒙𝒙 𝑡𝑡 + 𝒃𝒃
= tanh(𝒗𝒗 𝑡𝑡)

• 𝒐𝒐(𝑡𝑡) = 𝑽𝑽𝒉𝒉 𝑡𝑡 + 𝒄𝒄
• �𝒚𝒚(𝑡𝑡) = softmax(𝒐𝒐(𝑡𝑡))

• 𝒃𝒃, 𝒄𝒄: bias vectors

• softmax(𝒗𝒗𝑖𝑖) = exp(𝑣𝑣𝑖𝑖)
∑𝑗𝑗 exp(𝑣𝑣𝑗𝑗)

Part X 6

h(t)

x(t)

h(t-1)
W

U

b

A RNN cell:

Recurrent hidden units (cont.)

• Treat the unfolded
network as one big
feedforward network

• This big network takes
in an entire sequence
as input

• Compute gradients
through usual
backpropagation

• Update shared weights

Part X 7

U

V
W

o(t—1)

h

y

L

o(t) o(t+1)

L(t—1) L(t) L(t+1)

y(t—1) y(t) y(t+1)

h(t—1) h(t) h(t+1)

x(t—1) x(t) x(t+1)

WW W W
h(...) h(...)

V V V

U U U

Unfold

Recurrence through output only

Part X 8

U

V
W

o(t—1)

h

y

L

o(t) o(t+1)

L(t—1) L(t) L(t+1)

y(t—1) y(t) y(t+1)

h(t—1) h(t) h(t+1)

WW W W

o(...)

h(...)

V V V

U

x(t—1)

U

x(t)

U

x(t+1)

Unfold

Sequence input, single output

Part X 9

W
h(t)

x(t—1) x(t) x(...)

W
h(t—1)

W

U U U

h(z)

x(z)

W

U

o(z)y(z)

L(z)

V

Teacher forcing

Part X 10

o(t—1) o(t)

L(t—1) L(t)

y(t—1) y(t)

h(t—1) h(t)

W

V V

U

x(t—1)

U

x(t)

Training time

o(t—1) o(t)

h(t—1) h(t)

W
V V

U

x(t—1)

U

x(t)

Test time

Hidden and output recurrence

• The output values are not forced to be conditionally independent
in this model

Part X 11

o(t—1) o(t) o(t+1)

L(t—1) L(t) L(t+1)

y(t—1) y(t) y(t+1)

h(t—1) h(t) h(t+1)
WW W W

h(...) h(...)

V V V

U U U

R R R

Bidirectional RNN

Part X 12

Backward states

Forward states

Deep RNNs

Part X 13

RNN training

• Essentially, an RNN cell is copied over time (unrolling or
unfolding), with different inputs at different time steps
• The weights are shared over time

• Key difference from traditional backpropagation is the use of
shared parameters
• Pretend that the weights are not shared and apply normal

backpropagation to compute the gradients with respect to each copy
of the weights

• Summate (or average) the gradients over the various copies of each
weight copy

• Perform gradient descent update

• This algorithm is referred to as backpropagation through
time (BPTT)

Part X 14

Exploding and vanishing gradients

• Backpropagated partial derivatives get multiplied by weights
and derivatives of activation functions

• Unless the values are exactly one, these partial derivatives
either continuously increase (explode) or decrease (vanish)

• Exploding gradients: gradient clipping, i.e. scaling a gradient
if its magnitude is too large

• Vanishing gradients: changing RNN architecture

Part X 15

h(0) h(1) h(2) h(3)

x(1) x(3)x(2)

U U U

Gradient clipping illustration

• Without clipping: Gradient descent overshoots the bottom of a small ravine, and
then receives a very large gradient from the cliff surface. The large gradient
drives the parameters outside the plot, far away from the solution

• With clipping: Gradient descent has a moderate reaction to the cliff. While it
does ascend the cliff surface, the step size is restricted so that it cannot be driven
away from the steep region near the solution

Part X 16

w
b

w
b

Without clipping With clipping

RNN with long short-term memory

• With vanishing gradients, it is difficult to train RNNs to solve
problems that require learning long-term temporal
dependencies

• The most effective solution currently is gated RNNs, as
exemplified by the long short-term memory (LSTM)
architecture

Part X 17

LSTM unit

Part X 18

• An LSTM unit (cell) includes
“memory” to maintain information
for long periods of time

• A set of gates is used to control
when information enters the
memory, when it is output, and
when it is forgotten

• f: forget gate, how much to erase
• i: input gate, how much to write

to the unit
• a: input activation
• o: output gate, how much to

output
• c: cell state vector

• This architecture lets the unit learn
longer-term dependencies

×

input
gate

forget
gate

output
gate

output

state

self-loop

×

+ ×

input

LSTM: Forward pass

• Input and gate computation
𝒂𝒂(𝑡𝑡) = tanh 𝑾𝑾𝑎𝑎𝒉𝒉 𝑡𝑡−1 + 𝑼𝑼𝑎𝑎𝒙𝒙 𝑡𝑡 + 𝒃𝒃𝑎𝑎 = tanh(𝒗𝒗𝑎𝑎

(𝑡𝑡))

𝒊𝒊(𝑡𝑡) = σ(𝑾𝑾𝑖𝑖𝒉𝒉 𝑡𝑡−1 + 𝑼𝑼𝑖𝑖𝒙𝒙 𝑡𝑡 + 𝒃𝒃𝑖𝑖)= σ(𝒗𝒗𝑖𝑖
(𝑡𝑡))

𝒇𝒇(𝑡𝑡) = σ 𝑾𝑾𝑓𝑓𝒉𝒉 𝑡𝑡−1 + 𝑼𝑼𝑓𝑓𝒙𝒙 𝑡𝑡 + 𝒃𝒃𝑓𝑓 = σ(𝒗𝒗𝑓𝑓
(𝑡𝑡))

𝒐𝒐(𝑡𝑡) = σ(𝑾𝑾𝑜𝑜𝒉𝒉 𝑡𝑡−1 + 𝑼𝑼𝑜𝑜𝒙𝒙 𝑡𝑡 + 𝒃𝒃𝑜𝑜)= σ(𝒗𝒗𝑜𝑜
(𝑡𝑡))

• σ indicates a sigmoid

In other words

𝒗𝒗(𝑡𝑡) =

𝒗𝒗𝑎𝑎
(𝑡𝑡)

𝒗𝒗𝑖𝑖
(𝑡𝑡)

𝒗𝒗𝑓𝑓
(𝑡𝑡)

𝒗𝒗𝑜𝑜
(𝑡𝑡)

=

𝑾𝑾𝑎𝑎 𝑼𝑼𝑎𝑎
𝑾𝑾𝑖𝑖 𝑼𝑼𝑖𝑖
𝑾𝑾𝑓𝑓 𝑼𝑼𝑓𝑓
𝑾𝑾𝑜𝑜 𝑼𝑼𝑜𝑜

𝒉𝒉 𝑡𝑡−1

𝒙𝒙 𝑡𝑡 +

𝒃𝒃𝑎𝑎
𝒃𝒃𝑖𝑖
𝒃𝒃𝑓𝑓
𝒃𝒃𝑜𝑜

= 𝑾𝑾𝑰𝑰 𝑡𝑡 +𝒃𝒃

Part X 19

LSTM: Forward pass (cont.)

• Memory update: the state of the unit is
updated to the latest values

𝒄𝒄(𝑡𝑡) = 𝒇𝒇(𝑡𝑡)⨀𝒄𝒄 𝑡𝑡−1 + 𝒊𝒊(𝑡𝑡)⨀𝒂𝒂(𝑡𝑡)

• Symbol ⨀ denotes elementwise product

Part X 20

LSTM: Forward pass (cont.)

• Output: finally, the LSTM
unit computes an output value
by applying an activation
function (nonlinearity) to the
updated state value

𝒉𝒉(𝑡𝑡) = 𝒐𝒐(𝑡𝑡)⨀tanh(𝒄𝒄(𝑡𝑡))

Part X 21

LSTM: Backward pass
• The cell state at time t, 𝒄𝒄(𝑡𝑡), receives

gradients from 𝒉𝒉(𝑡𝑡) as well as the next
cell state 𝒄𝒄(𝑡𝑡+1). At time step t, these
two gradients are accumulated before
being backpropagated to the layers
below the cell and the previous time
steps
• Forward pass: 𝒉𝒉(𝑡𝑡) = 𝒐𝒐(𝑡𝑡)⨀tanh(𝒄𝒄(𝑡𝑡))

• Given ∇𝐸𝐸(𝒉𝒉(𝑡𝑡)) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝒉𝒉(𝑡𝑡), find ∇𝐸𝐸(𝒄𝒄(𝑡𝑡))

Thus ∇𝐸𝐸(𝒄𝒄(𝑡𝑡)) += ∇𝐸𝐸(𝒉𝒉(𝑡𝑡))⨀ 𝒐𝒐 𝑡𝑡 ⨀�1 −

Part X 22
Symbol += indicates this gradient is added to the
gradient from (t+1) (i.e. gradient accumulation)

𝜕𝜕𝐸𝐸

𝜕𝜕𝑐𝑐𝑖𝑖
(𝑡𝑡) =

𝜕𝜕𝐸𝐸

𝜕𝜕ℎ𝑖𝑖
(𝑡𝑡)
𝜕𝜕ℎ𝑖𝑖

𝑡𝑡

𝜕𝜕𝑐𝑐𝑖𝑖
𝑡𝑡 = ∇𝐸𝐸(ℎ𝑖𝑖

𝑡𝑡)𝑜𝑜𝑖𝑖
𝑡𝑡 1 − tanh2 𝑐𝑐𝑖𝑖

𝑡𝑡

∇𝐸𝐸(ℎ(𝑡𝑡))

Summary

• RNNs are uniquely suited for sequence modeling and
temporal (dynamical) tasks

• RNN training is more difficult than training a feedforward
net

• Gated RNNs, particularly RNNs with LSTM, are very
successful in real world applications

Part X 23

	CSE 5526: Introduction to Neural Networks
	Motivation
	Classical dynamical systems
	Unfolding computations
	Recurrent hidden units
	A typical RNN cell
	Recurrent hidden units (cont.)
	Recurrence through output only
	Sequence input, single output
	Teacher forcing
	Hidden and output recurrence
	Bidirectional RNN
	Deep RNNs
	RNN training
	Exploding and vanishing gradients
	Gradient clipping illustration
	RNN with long short-term memory
	LSTM unit
	LSTM: Forward pass
	LSTM: Forward pass (cont.)
	LSTM: Forward pass (cont.)
	LSTM: Backward pass
	Summary

