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CSE 5526: Introduction to Neural Networks 

Radial Basis Function 
(RBF) Networks 
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Function approximation 

• MLP is both a pattern classifier and a function approximator  
• As a function approximator, MLP is nonlinear, 

semiparametric, and universal 
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Function approximation background 

• Weierstrass theorem: any continuous real function in an 
interval can be approximated arbitrarily well by a set of 
polynomials 

• Taylor expansion approximates any differentiable function 
by polynomials in a neighborhood of a point 

• Fourier series gives a way of approximating any periodic 
function by a sum of sine's 

 
 



Linear projection 

• Approximate function f (x) by a linear combination of 
simpler functions 
 
 
 

• If wj’s can be chosen so that approximation error is 
arbitrarily small for any function f (x) over the domain of 
interest, {𝜑𝜑𝑗𝑗}  has the property of universal approximation, or 
{𝜑𝜑𝑗𝑗} is complete 
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𝐹𝐹 𝐱𝐱 = �𝑤𝑤𝑗𝑗𝜑𝜑𝑗𝑗(𝐱𝐱)
𝑗𝑗

 



Example bases 

• sinc 𝑥𝑥 = sin(𝑥𝑥)
𝑥𝑥
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Example bases (cont.) 

• sine function 
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Radial basis functions 

• Consider 

𝜑𝜑𝑗𝑗 𝐱𝐱 = exp(−
1

2σ2
||𝐱𝐱−𝐱𝐱𝑗𝑗||2) 

=G(||𝐱𝐱−𝐱𝐱𝑗𝑗||)  
 

• A Gaussian is a local basis function, falling off exponentially 
from the center 
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G(||x-xj||) 

xj 
x 

1 



Radial basis functions (cont.) 

• Thus approximation by RBF becomes 
 

𝐹𝐹(𝐱𝐱)=�𝑤𝑤𝑗𝑗G(||𝐱𝐱−𝐱𝐱𝑗𝑗||)
𝑗𝑗
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RBF approximation illustration 
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Remarks 

• Gaussians are universal approximators 
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Remarks (cont.) 

• Such a radial basis function is called a kernel, a term from 
statistics 
• As a result, RBF nets are a kind of kernel methods 

• Other RBFs exist, such as multiquadrics (see textbook) 
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Four questions to answer for RBF nets 

• How to identify Gaussian centers? 
• How to determine Gaussian widths? 
• How to choose weights 𝑤𝑤𝑗𝑗′s? 
• How to select the number of bases? 
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Gaussian centers 

• Identify Gaussian centers via unsupervised clustering: K-
means algorithm  

• Goal of the K-means algorithm: Divide N input patterns into 
K clusters so as to minimize the final variance. In other 
words, partition patterns into K clusters 𝐶𝐶𝑗𝑗′s to minimize the 
following cost function 

 

𝐽𝐽=�� ||𝐱𝐱𝑖𝑖−𝐮𝐮𝑗𝑗||2
𝑖𝑖∈𝐶𝐶𝑗𝑗

𝐾𝐾

𝑗𝑗=1

 

 

where 𝐮𝐮𝑗𝑗 = 1
||𝐶𝐶𝑗𝑗||

∑ 𝐱𝐱𝑖𝑖𝑖𝑖∈𝐶𝐶𝑗𝑗  is the mean (center) of cluster j 
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K-means algorithm 

1. Choose a set of K cluster centers randomly from the input 
patterns 

2. Assign the N input patterns to the K clusters using the 
squared Euclidean distance rule: 
 

  𝐱𝐱 is assigned to 𝐶𝐶𝑗𝑗 if ||𝐱𝐱−𝐮𝐮𝑗𝑗||2 ≤ ||𝐱𝐱−𝐮𝐮𝑖𝑖||2 for 𝑖𝑖 ≠ 𝑗𝑗 
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K-means algorithm (cont.) 

 

3. Update cluster centers 
 

𝐮𝐮𝑗𝑗 =
1

||𝐶𝐶𝑗𝑗||
�𝐱𝐱𝑖𝑖
𝑖𝑖∈𝐶𝐶𝑗𝑗

 

 
4. If any cluster center changes, go to step 2; otherwise stop 

 
• Remark: The K-means algorithm always converges, but the 

global minimum is not assured 
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Calculating Gaussian widths 

• Once cluster centers are determined, the variance within 
each cluster can be set to  
 

σ  𝑗𝑗2  =
1

||𝐶𝐶𝑗𝑗||
� ||𝐮𝐮𝑗𝑗 − 𝐱𝐱𝑖𝑖||2
𝑖𝑖∈𝐶𝐶𝑗𝑗

 

 
• Remark: to simplify the RBF net design, different clusters often 

assume the same Gaussian width: 

σ=
𝑑𝑑max
2𝐾𝐾

 

 where dmax is the maximum distance between cluster centers 
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Weight update 

• With the hidden layer decided, weight training can be treated 
as a linear regression problem, and the LMS algorithm is an 
efficient way for weight update 
• Note that a bias term needs to be included 
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Selection of the number of bases:  
bias-variance dilemma 

• The same problem as that of selecting the size of an MLP for 
classification 

• The problem of overfitting 
• Example: Consider polynomial curve fitting 

 

𝐹𝐹(𝑥𝑥)=�𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗
𝑀𝑀

𝑗𝑗=0

 

 
for 𝑓𝑓(𝑥𝑥) = 0.5 + 0.4 sin(2π𝑥𝑥) by an M-order F 
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Overfitting: 
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𝐹𝐹(𝑥𝑥)=�𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗
𝑀𝑀

𝑗𝑗=0

 

M = 1 M = 3 

M = 10 



Occam’s razor 

• The best scientific model is the simplest that is consistent 
with the data 
• In our case, it translates to the principle that a learning machine 

should be large enough to approximate the data well, but not larger 

• Occam’s razor is a general principle governing supervised 
learning and generalization 
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Bias and variance 

• Bias: training error – difference between desired output and 
actual output for a particular training sample 

• Variance: generalization error – difference between the 
learned function from a particular training sample and the 
function derived from all training samples 
• Example: two extreme cases: zero bias and zero variance 
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Bias and variance (cont.) 

• The optimal size of a learning machine is thus a compromise 
between the bias and the variance of a model 
• In other words, a good-sized model is the one where both bias and 

variance are low 

• For RBF nets, in practice, cross validation can be applied to 
select the number of bases, where validation error is 
measured for a series of numbers of bases 
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XOR problem, again 

• RBF nets can also 
be applied to 
pattern 
classification 
problems 
• XOR problem 

revisited 
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XOR problem (cont.) 
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XOR problem, again 

• RBF nets can also 
be applied to 
pattern 
classification 
problems 
• XOR problem 

revisited 
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Comparison between RBF and MLP 

• For RBF nets, bases are local, while for MLP, “bases” are 
global 

• Generally, more bases are needed than hidden units in MLP 
• Training is more efficient for RBF nets 
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