CSE 5526: Introduction to Neural Networks

Radial Basis Function (RBF) Networks

Function approximation

- MLP is both a pattern classifier and a function approximator
- As a function approximator, MLP is nonlinear, semiparametric, and universal

Part IV

Function approximation background

- Weierstrass theorem: any continuous real function in an interval can be approximated arbitrarily well by a set of polynomials
- Taylor expansion approximates any differentiable function by polynomials in a neighborhood of a point
- Fourier series gives a way of approximating any periodic function by a sum of sine's

Linear projection

• Approximate function f(x) by a linear combination of simpler functions

$$F(\mathbf{x}) = \sum_{j} w_{j} \varphi_{j}(\mathbf{x})$$

• If w_j 's can be chosen so that approximation error is arbitrarily small for any function $f(\mathbf{x})$ over the domain of interest, $\{\varphi_j\}$ has the property of universal approximation, or $\{\varphi_j\}$ is complete

Example bases

• $\operatorname{sinc} x = \frac{\sin(x)}{x}$

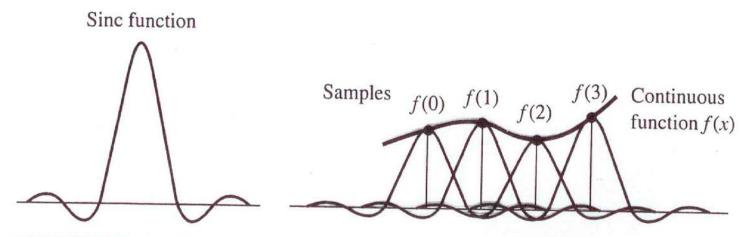
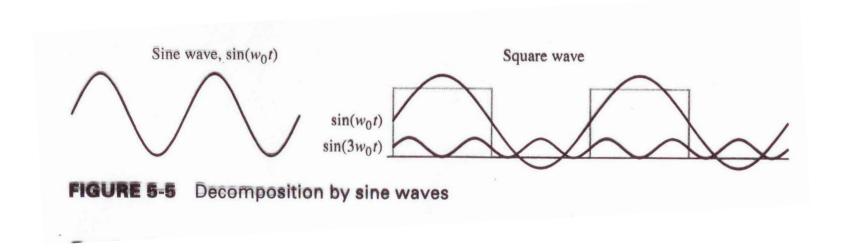


FIGURE 5-4 Decomposition by sinc functions

Example bases (cont.)

• sine function

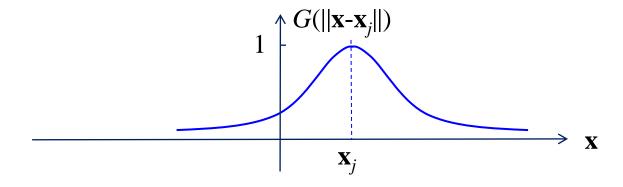


Radial basis functions

Consider

$$\varphi_j(\mathbf{x}) = \exp(-\frac{1}{2\sigma^2}||\mathbf{x} - \mathbf{x}_j||^2)$$
$$= G(||\mathbf{x} - \mathbf{x}_j||)$$

• A Gaussian is a local basis function, falling off exponentially from the center

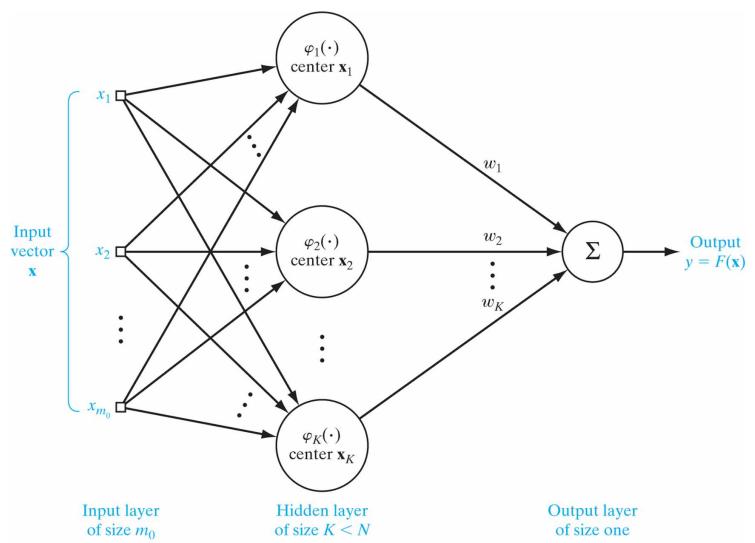


Radial basis functions (cont.)

Thus approximation by RBF becomes

$$F(\mathbf{x}) = \sum_{j} w_{j} G(||\mathbf{x} - \mathbf{x}_{j}||)$$

RBF approximation illustration



Part IV

Remarks

Gaussians are universal approximators

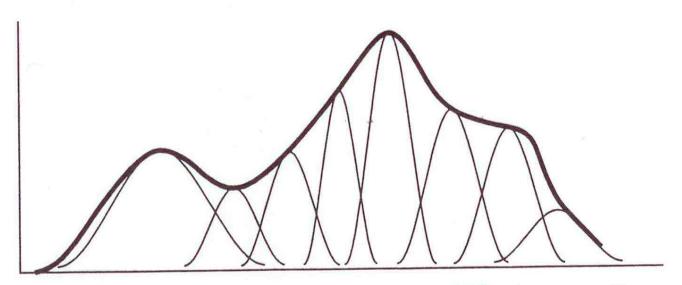


FIGURE 5-8 Approximation by RBFs in one dimension

Remarks (cont.)

- Such a radial basis function is called a kernel, a term from statistics
 - As a result, RBF nets are a kind of kernel methods
- Other RBFs exist, such as multiquadrics (see textbook)

Four questions to answer for RBF nets

- How to identify Gaussian centers?
- How to determine Gaussian widths?
- How to choose weights w_i 's?
- How to select the number of bases?

Gaussian centers

- Identify Gaussian centers via unsupervised clustering: *K*-means algorithm
- Goal of the K-means algorithm: Divide N input patterns into K clusters so as to minimize the final variance. In other words, partition patterns into K clusters C_j 's to minimize the following cost function

$$J = \sum_{j=1}^{K} \sum_{i \in C_j} ||\mathbf{x}_i - \mathbf{u}_j||^2$$

where $\mathbf{u}_j = \frac{1}{||C_j||} \sum_{i \in C_j} \mathbf{x}_i$ is the mean (center) of cluster j

K-means algorithm

- 1. Choose a set of *K* cluster centers randomly from the input patterns
- 2. Assign the *N* input patterns to the *K* clusters using the squared Euclidean distance rule:

x is assigned to C_i if $||\mathbf{x} - \mathbf{u}_i||^2 \le ||\mathbf{x} - \mathbf{u}_i||^2$ for $i \ne j$

K-means algorithm (cont.)

3. Update cluster centers

$$\mathbf{u}_j = \frac{1}{||C_j||} \sum_{i \in C_j} \mathbf{x}_i$$

- 4. If any cluster center changes, go to step 2; otherwise stop
- **Remark:** The *K*-means algorithm always converges, but the global minimum is not assured

Calculating Gaussian widths

• Once cluster centers are determined, the variance within each cluster can be set to

$$\sigma_j^2 = \frac{1}{||C_j||} \sum_{i \in C_j} ||\mathbf{u}_j - \mathbf{x}_i||^2$$

• **Remark**: to simplify the RBF net design, different clusters often assume the same Gaussian width:

$$\sigma = \frac{d_{\text{max}}}{\sqrt{2K}}$$

where d_{max} is the maximum distance between cluster centers

Weight update

- With the hidden layer decided, weight training can be treated as a linear regression problem, and the LMS algorithm is an efficient way for weight update
 - Note that a bias term needs to be included

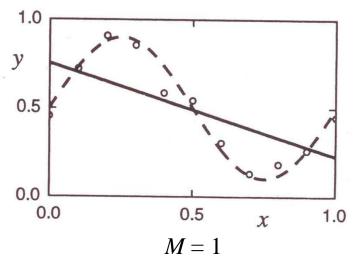
Selection of the number of bases: bias-variance dilemma

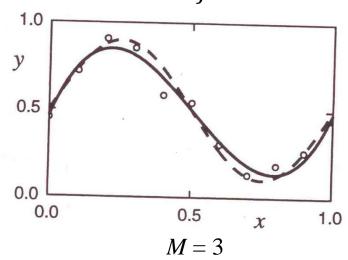
- The same problem as that of selecting the size of an MLP for classification
- The problem of overfitting
 - Example: Consider polynomial curve fitting

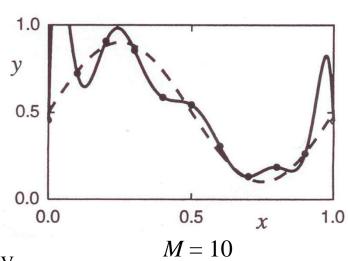
$$F(x) = \sum_{j=0}^{M} w_j x^j$$

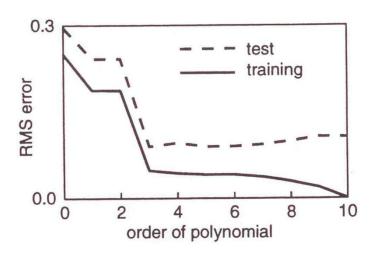
for $f(x) = 0.5 + 0.4 \sin(2\pi x)$ by an M-order F

Overfitting:
$$F(x) = \sum_{j=0}^{M} w_j x^j$$









Part IV

Occam's razor

- The best scientific model is the simplest that is consistent with the data
 - In our case, it translates to the principle that a learning machine should be large enough to approximate the data well, but not larger
- Occam's razor is a general principle governing supervised learning and generalization

Bias and variance

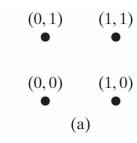
- Bias: training error difference between desired output and actual output for a particular training sample
- Variance: generalization error difference between the learned function from a particular training sample and the function derived from all training samples
 - Example: two extreme cases: zero bias and zero variance

Bias and variance (cont.)

- The optimal size of a learning machine is thus a compromise between the bias and the variance of a model
 - In other words, a good-sized model is the one where both bias and variance are low
- For RBF nets, in practice, cross validation can be applied to select the number of bases, where validation error is measured for a series of numbers of bases

XOR problem, again

- RBF nets can also be applied to pattern classification problems
 - XOR problem revisited



XOR problem (cont.)

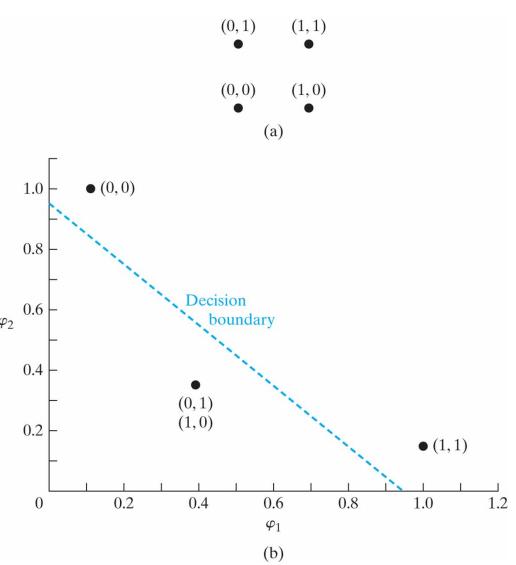
TABLE 5.1 Specification of the Hidden Functions for the XOR Problem of Example 1

Input Pattern x	First Hidden Function $\varphi_1(\mathbf{x})$	Second Hidden Function $\phi_2(\mathbf{x})$
(1,1)	1	0.1353
(0,1)	0.3678	0.3678
(0,0)	0.1353	1
(1,0)	0.3678	0.3678

Part IV

XOR problem, again

- RBF nets can also be applied to pattern classification problems
 - XOR problem revisited



Comparison between RBF and MLP

- For RBF nets, bases are local, while for MLP, "bases" are global
- Generally, more bases are needed than hidden units in MLP
- Training is more efficient for RBF nets