CSE 5526: Introduction to Neural Networks

Linear Regression

Problem statement

Problem statement

Linear regression with one variable

• Given a set of N pairs of data $\langle x_i, d_i \rangle$, approximate d by a linear function of x (regressor)

i.e.

$$d \approx wx + b$$

or

$$d_i = y_i + \varepsilon_i = \varphi(wx_i + b) + \varepsilon_i$$
$$= wx_i + b + \varepsilon_i$$

where the activation function $\varphi(x) = x$ is a linear function, and it corresponds to a linear neuron. y is the output of the neuron, and

$$\varepsilon_i = d_i - y_i$$

is called the regression (expectational) error

- The problem of regression with one variable is how to choose w and b to minimize the regression error
- The least squares method aims to minimize the square error *E*:

$$E = \frac{1}{2} \sum_{i=1}^{N} \varepsilon_i^2 = \frac{1}{2} \sum_{i=1}^{N} (d_i - y_i)^2$$

• To minimize the two-variable square function, set

$$\begin{cases} \frac{\partial E}{\partial b} = 0\\ \frac{\partial E}{\partial w} = 0 \end{cases}$$

$$\frac{\partial E}{\partial b} = \frac{1}{2} \sum_{i} \frac{\partial (d_i - wx_i - b)^2}{\partial b}$$

$$= -\sum_{i} (d_i - wx_i - b) = 0$$

$$\frac{\partial E}{\partial w} = \frac{1}{2} \sum_{i} \frac{\partial (d_i - wx_i - b)^2}{\partial w}$$

$$= -\sum_{i} (d_i - wx_i - b)x_i = 0$$

Hence

$$b = \frac{\sum_{i} x_i^2 \sum_{i} d_i - \sum_{i} x_i \sum_{i} x_i d_i}{N[\sum_{i} (x_i - \overline{x})^2]}$$

Derive yourself!

$$w = \frac{\sum_{i} (x_i - \overline{x})(d_i - \overline{d})}{\sum_{i} (x_i - \overline{x})^2}$$

where an overbar (i.e. \overline{x}) indicates the mean

• This method gives an optimal solution, but it can be timeand memory-consuming as a batch solution

Finding optimal parameters via search

• Without loss of generality, set b = 0

$$E(w) = \frac{1}{2} \sum_{i=1}^{N} (d_i - wx_i)^2$$

E(w) is called a cost function

Cost function

• Question: how can we update w to minimize E?

Gradient and directional derivatives

• Without loss of generality, consider a two-variable function f(x, y). The gradient of f(x, y) at a given point $(x_0, y_0)^T$ is

$$\nabla f = \left(\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y}\right)^T \begin{vmatrix} x = x_0 \\ y = y_0 \end{vmatrix}$$

$$= f_x(x_0, y_0)\mathbf{u}_x + f_y(x_0, y_0)\mathbf{u}_y$$

where \mathbf{u}_x and \mathbf{u}_y are unit vectors in the x and y directions, and $f_x = \partial f / \partial x$ and $f_y = \partial f / \partial y$

• At any given direction, $\mathbf{u} = a\mathbf{u}_x + b\mathbf{u}_y$, with $\sqrt{a^2 + b^2} = 1$, the directional derivative at $(x_0, y_0)^T$ along the unit vector \mathbf{u} is

$$\begin{split} D_{\mathbf{u}}f(x_0, y_0) &= \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h} \\ &= \lim_{h \to 0} \frac{[f(x_0 + ha, y_0 + hb) - f(x_0, y_0 + hb)] + [f(x_0, y_0 + hb) - f(x_0, y_0)]}{h} \\ &= af_x(x_0, y_0) + bf_y(x_0, y_0) \\ &= \nabla f^T(x_0, y_0) \mathbf{u} \end{split}$$

- Which direction has the greatest slope?
 - The gradient because of the dot product!

• Example: see blackboard

• To find the gradient at a particular point $(x_0, y_0)^T$, first find the level curve or contour of f(x, y) at that point, $C(x_0, y_0)$. A tangent vector **u** to C satisfies

$$D_{\mathbf{u}} = \nabla f^T(x_0, y_0)\mathbf{u} = 0$$

because f(x, y) is constant on a level curve. Hence the gradient vector is perpendicular to the tangent vector

An illustration of level curves

- The gradient of a cost function is a vector with the dimension of w that points to the direction of maximum E increase and with a magnitude equal to the slope of the tangent of the cost function along that direction
 - Can the slope be negative?

Gradient illustration

Gradient descent

• Minimize the cost function via gradient (steepest) descent – a case of hill-climbing

$$w(n+1) = w(n) - \eta \nabla E(n)$$

n: iteration number

 η : learning rate

•See previous figure

Gradient descent (cont.)

• For the mean-square-error cost function:

$$E(n) = \frac{1}{2}e^{2}(n) = \frac{1}{2}[d(n) - y(n)]^{2}$$

$$= \frac{1}{2}[d(n) - w(n)x(n)]^{2} \qquad \text{linear neurons}$$

$$\nabla E(n) = \frac{\partial E}{\partial w(n)} = \frac{1}{2}\frac{\partial e^{2}(n)}{\partial w(n)}$$

$$= -e(n)x(n)$$

Gradient descent (cont.)

Hence

$$w(n+1) = w(n) + \eta e(n)x(n)$$
$$= w(n) + \eta [d(n) - y(n)]x(n)$$

• This is the least-mean-square (LMS) algorithm, or the Widrow-Hoff rule

Multi-variable case

 The analysis for the one-variable case extends to the multivariable case

$$E(n) = \frac{1}{2} [d(n) - \mathbf{w}^{T}(n)\mathbf{x}(n)]^{2}$$

$$\nabla E(\mathbf{w}) = \left(\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_m}\right)^T$$

where $w_0 = b$ (bias) and $x_0 = 1$, as done for perceptron learning

Multi-variable case (cont.)

The LMS algorithm

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \eta \nabla E(n)$$

$$= \mathbf{w}(n) + \eta e(n) \mathbf{x}(n)$$

$$= \mathbf{w}(n) + \eta [d(n) - y(n)] \mathbf{x}(n)$$

LMS algorithm

Remarks

- The LMS rule is exactly the same in math form as the perceptron learning rule
- Perceptron learning is for McCulloch-Pitts neurons, which are nonlinear, whereas LMS learning is for linear neurons. In other words, perceptron learning is for classification and LMS is for function approximation
- LMS should be less sensitive to noise in the input data than perceptrons. On the other hand, LMS learning converges slowly
- Newton's method changes weights in the direction of the minimum $E(\mathbf{w})$ and leads to fast convergence. But it is not an online version and computationally extensive

Stability of adaptation

• When η is too small, learning converges slowly

Stability of adaptation (cont.)

• When η is too large, learning doesn't converge

Learning rate annealing

- Basic idea: start with a large rate but gradually decrease it
- Stochastic approximation

$$\eta(n) = \frac{c}{n}$$

c is a positive parameter

Learning rate annealing (cont.)

• Search-then-converge

$$\eta(n) = \frac{\eta_0}{1 + (n/\tau)}$$

 η_0 and τ are positive parameters

- •When n is small compared to τ , learning rate is approximately constant
- •When n is large compared to τ , learning rate schedule roughly follows stochastic approximation

Rate annealing illustration

Nonlinear neurons

• To extend the LMS algorithm to nonlinear neurons, consider differentiable activation function φ at iteration n

$$E(n) = \frac{1}{2} [d(n) - y(n)]^2$$

$$= \frac{1}{2} [d(n) - \varphi(\sum_{j} w_j x_j(n))]^2$$

Nonlinear neurons (cont.)

By chain rule of differentiation

$$\frac{\partial E}{\partial w_j} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial v} \frac{\partial v}{\partial w_j}$$

$$= -[d(n) - y(n)] \varphi'(v(n)) x_j(n)$$

$$= -e(n) \varphi'(v(n)) x_j(n)$$

Nonlinear neurons (cont.)

• The gradient descent gives

$$w_{j}(n+1) = w_{j}(n) + \eta \underline{e(n)} \varphi'(v(n)) x_{j}(n)$$
$$= w_{j}(n) + \eta \delta(n) x_{j}(n)$$

- The above is called the delta (δ) rule
- If we choose a logistic sigmoid for φ

$$\varphi(v) = \frac{1}{1 + \exp(-av)}$$

then

$$\varphi'(v) = a\varphi(v)[1-\varphi(v)]$$
 (see textbook)

Role of activation function

• The role of φ' : weight update is most sensitive when v is near zero