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CSE 5526: Introduction to Neural Networks

Linear Regression
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Problem statement
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Problem statement
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Linear regression with one variable

• Given a set of N pairs of data < xi, di >, approximate d by a 
linear function of x (regressor)
i.e.

or

where the activation function φ(x) = x is a linear function, and it 
corresponds to a linear neuron. y is the output of the neuron, and

is called the regression (expectational) error
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Part II 5

Linear regression (cont.)

• The problem of regression with one variable is how to 
choose w and b to minimize the regression error

• The least squares method aims to minimize the square error 
E:
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Part II 6

Linear regression (cont.)

• To minimize the two-variable square function, set
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Part II 7

Linear regression (cont.)
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Part II 8

Linear regression (cont.)

• Hence

where an overbar (i.e.    ) indicates the mean
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Part II 9

Linear regression (cont.)

• This method gives an optimal solution, but it can be time-
and memory-consuming as a batch solution
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Finding optimal parameters via search

• Without loss of generality, set b = 0

E(w) is called a cost function
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Part II 11

Cost function

w

E(w)

w*

Emin

 Question: how can we update w to minimize E?
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Gradient and directional derivatives

• Without loss of generality, consider a two-variable function 
f(x, y). The gradient of f(x, y) at a given point (x0, y0)T is

where ux and uy are unit vectors in the x and y directions, and
and 
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Part II 13

Gradient and directional derivatives (cont.)

• At any given direction, u = aux + buy, with                     , the 
directional derivative at (x0, y0)T along the unit vector u is

• Which direction has the greatest slope? 
– The gradient because of the dot product!
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Part II 14

Gradient and directional derivatives (cont.)

• Example: see blackboard
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Gradient and directional derivatives (cont.)

• To find the gradient at a particular point (x0, y0)T, first find 
the level curve or contour of f(x, y) at that point, C(x0, y0). A 
tangent vector u to C satisfies 

because f(x, y) is constant on a level curve. Hence the 
gradient vector is perpendicular to the tangent vector
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An illustration of level curves
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Gradient and directional derivatives (cont.)

• The gradient of a cost function is a vector with the 
dimension of w that points to the direction of maximum E
increase and with a magnitude equal to the slope of the 
tangent of the cost function along that direction
• Can the slope be negative?
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Gradient illustration
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Part II 19

Gradient descent

• Minimize the cost function via gradient (steepest) descent –
a case of hill-climbing

n: iteration number
η: learning rate

•See previous figure
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Part II 20

Gradient descent (cont.)

• For the mean-square-error cost function:
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Part II 21

Gradient descent (cont.)

• Hence

• This is the least-mean-square (LMS) algorithm, or the Widrow-Hoff 
rule
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Part II 22

Multi-variable case

• The analysis for the one-variable case extends to the multi-
variable case

where w0= b (bias) and x0 = 1, as done for perceptron learning
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Multi-variable case (cont.)

• The LMS algorithm
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LMS algorithm

• Remarks
• The LMS rule is exactly the same in math form as the perceptron 

learning rule
• Perceptron learning is for McCulloch-Pitts neurons, which are 

nonlinear, whereas LMS learning is for linear neurons. In other 
words, perceptron learning is for classification and LMS is for 
function approximation

• LMS should be less sensitive to noise in the input data than 
perceptrons. On the other hand, LMS learning converges slowly

• Newton’s method changes weights in the direction of the minimum 
E(w) and leads to fast convergence. But it is not an online version 
and computationally extensive
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Stability of adaptation

 When η is too small, 
learning converges slowly
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Stability of adaptation (cont.)

 When η is too large, learning 
doesn’t converge
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Learning rate annealing

• Basic idea: start with a large rate but gradually decrease it
• Stochastic approximation

c is a positive parameter

n
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Learning rate annealing (cont.)

• Search-then-converge

η0 and τ are positive parameters

•When n is small compared to τ, learning rate is approximately constant
•When n is large compared to τ, learning rate schedule roughly follows 
stochastic approximation
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Rate annealing illustration
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Nonlinear neurons

• To extend the LMS algorithm to nonlinear neurons, consider 
differentiable activation function φ at iteration n
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Part II 31

Nonlinear neurons (cont.)

• By chain rule of differentiation
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Part II 32

Nonlinear neurons (cont.)

• The gradient descent gives

• The above is called the delta (δ) rule
• If we choose a logistic sigmoid for φ

then
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Role of activation function
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 The role of φ′: weight update is most sensitive when v is near zero
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