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CSE 5526: Introduction to 
Neural Networks

Instructor: DeLiang Wang
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What is this course is about?
 AI (artificial intelligence) in the broad sense, in particular 

learning
 The human brain and its amazing ability, e.g. vision
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Human brain

Lateral fissure

Central sulcus
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Brain versus computer

Brain


•
•

Computer


•
•

Brain-like computation – Neural networks (NN or ANN) –
Neural computation
• Discuss syllabus
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A single neuron
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A single neuron
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Real neurons, real synapses
 Properties

 Action potential (impulse) generation
 Impulse propagation
 Synaptic transmission & plasticity
 Spatial summation

 Terminology
 Neurons – units – nodes
 Synapses – connections – architecture
 Synaptic weight – connection strength (either positive or negative)
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Model of a single neuron
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Neuronal model
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Another way of including bias
Set x0 = +1 and wk0 = bk
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McCulloch-Pitts model
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 Note difference from textbook; also number of neurons in the brain

Bipolar input 
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McCulloch-Pitts model (cont.)

• Example logic gates (see blackboard)

• McCulloch-Pitts networks (introduced in 1943) are the first 
class of abstract computing machines: finite-state automata
• Finite-state automata can compute any logic (Boolean) function
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Network architecture

• View an NN as a connected, directed graph, which defines 
its architecture
• Feedforward nets: loop-free graph
• Recurrent nets: with loops
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Feedforward net

• Since the input layer 
consists of source nodes, 
it is typically not 
counted when we talk 
about the number of 
layers in a feedforward 
net

• For example, the 
architecture of 10-4-2 
counts as a two-layer net
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A one-layer recurrent net

In this net, the input 
typically sets the initial 
condition of the output 
layer
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Network components

• Three components characterize a neural net
• Architecture
• Activation function
• Learning rule (algorithm)
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CSE 5526: Introduction to Neural Networks

Perceptrons
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Perceptrons

• Architecture: one-layer feedforward net
• Without loss of generality, consider a single-neuron perceptron

• 
• 
• 

• 
• 
• 
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Definition
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Pattern recognition

• With a bipolar output, the perceptron performs a 2-class 
classification problem
• Apples vs. oranges

• How do we learn to perform a classification problem?
• Task: The perceptron is given pairs of input xp and desired 

output dp. How to find w (with b incorporated) so that

? allfor     , pdy pp =
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Decision boundary

• The decision boundary for a given w: 

• g is also called the discriminant function for the perceptron, and it is 
a linear function of x. Hence it is a linear discriminant function
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Example

• See blackboard
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Decision boundary (cont.)

• For an m-dimensional input space, the decision boundary is 
an (m ‒ 1)-dimensional hyperplane perpendicular to w. The 
hyperplane separates the input space into two halves, with 
one half having y = 1, and the other half having y = -1
• When b = 0, the hyperplane goes through the origin
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Linear separability

• For a set of input patterns xp, if there exists one w that 
separates d = 1 patterns from d = -1 patterns, then the 
classification problem is linearly separable
• In other words, there exists a linear discriminant function that 

produces no classification error
• Examples: AND, OR, XOR (see blackboard)

• A very important concept
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Linear separability: a more general illustration
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Perceptron learning rule

• Strengthen an active synapse if the postsynaptic neuron fails 
to fire when it should have fired; weaken an active synapse if 
the neuron fires when it should not have fired
• Formulated by Rosenblatt based on biological intuition
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Quantitatively

)()()1( nwnwnw ∆+=+

 n: iteration number
 η: step size or learning rate

)()]()([)( nxnyndnw −+= η

In vector form

xw ][ yd −=∆ η
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Geometric interpretation

• Assume η = 1/2
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Geometric interpretation

• Assume η = 1/2
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Geometric interpretation

• Assume η = 1/2
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Geometric interpretation

• Assume η = 1/2
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Geometric interpretation

• Assume η = 1/2
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Geometric interpretation

• Assume η = 1/2

x1

x2

w(0)

x: d = 1

o

oo

o: d = -1

x
x

x

w(1)

w(2)
w(3)



Part I 34

Geometric interpretation

Each weight update moves w closer to d = 1 patterns, or away 
from d = -1 patterns. w(3) solves the classification problem
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Perceptron convergence theorem

• Theorem: If a classification problem is linearly separable, a 
perceptron will reach a solution in a finite number of 
iterations

• [Proof]
Given a finite number of training patterns, because of linear separability, 
there exists a weight vector wo so that

where
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Proof (cont.)

• We assume that the initial weights are all zero. Let Np denote 
the number of times xp has been used for actually updating 
the weight vector at some point in learning

At that time:
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Proof (cont.)

• Consider          first
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Proof (cont.)

• Now consider the change in square length         after a single 
update by x:

where
Since upon an update, d(wTx) ≤ 0
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Proof (cont.)

• By summing         for P steps we have the bound:

• Now square the cosine of the angle between wo and w, we 
have by (2) and (3)

Cauchy-Schwarz inequality
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Proof (cont.)

• Thus, P must be finite to satisfy the above inequality. This 
completes the proof

• Remarks
• In the case of w(0) = 0, the learning rate has no effect on the proof. 

That is, the theorem holds no matter what η (η > 0) is
• The solution weight vector is not unique
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Generalization

• Performance of a learning machine on test patterns not used 
during training

• Example: Class 1: handwritten “m”: class 2: handwritten “n”
• See blackboard

• Perceptrons generalize by deriving a decision boundary in 
the input space. Selection of training patterns is thus 
important for generalization
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