CSE 5526: Introduction to
Neural Networks

Instructor: DelLiang Wang



What i1s this course Is about?

« Al (artificial intelligence) in the broad sense, in particular
learning

o The human brain and its amazing ability, e.g. vision
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Brain versus computer

Brain Computer

Brain-like computation — Neural networks (NN or ANN) —
Neural computation
* Discuss syllabus
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FIGURE 2-1

The main features of a typical vertebrate neuron. This neuron is
drawn to illustrate its various regions and its points of contact
with other nerve cells. The cell body contains the nucleus and
perikaryon. The cell body gives rise to two types of processes—
dendrites (both apical and basal| and axons. The axon is the
transmitting element of the neuron. Axons vary greatly in length,
with some extending more than 1 meter. Most axons in the
central nervous system are very thin (between 0.2 and 20 pm)
compared with the diameter of the cell body (up to 50 pm or
more in diameter). The axon hillock, the region of the cell body
where the axon emerges, is where the action potential is initiated.
Many axons are insulated by a fatty myelin sheath, which is in-
terrupted at regular intervals by regions known as the nodes of
Ranvier. Branches of the axon of one neuron (the presynaptic neu-
ron) form synaptic connections with the dendrites or cell body of
another neuron (the postsynaptic cell]. The branches of the axon
may form synapses with as many as 1000 other neurons.
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transmitting element of the neuron. Axons vary greatly in length,
with some extending more than 1 meter. Most axons in the
central nervous system are very thin (between 0.2 and 20 pm)
compared with the diameter of the cell body (up to 50 pm or
more in diameter). The axon hillock, the region of the cell body
where the axon emerges, is where the action potential is initiated.
Many axons are insulated by a fatty myelin sheath, which is in-
terrupted at regular intervals by regions known as the nodes of
Ranvier. Branches of the axon of one neuron (the presynaptic neu-
ron) form synaptic connections with the dendrites or cell body of
another neuron (the postsynaptic cell]. The branches of the axon
may form synapses with as many as 1000 other neurons.



Real neurons, real synapses

o Properties
 Action potential (impulse) generation
« Impulse propagation
o Synaptic transmission & plasticity
« Spatial summation

o Terminology
« Neurons — units — nodes
« Synapses — connections — architecture
« Synaptic weight — connection strength (either positive or negative)
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Neuronal model

m
U, = ZW X, Adder, weighted sum, linear
K k™) combiner
J=1
v, =U, + bk Activation potential; b,: bias

Ve =@ (V) Output; ¢: activation function
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Another way of including bias

Set x, = +1 and w,, = b,

m
Sowe have v, = WX
=0

Fixed input xy = +1

K

X1

Activation
function
(@
Output
[nputs < @(+) Vi
: : Summing
junction

‘\AIH

\

Synaptic
weights
Part | (including bias)



McCulloch-Pitts model

X; €{-1,1}  Bipolar input

y= §D(ZWiXi +D)

(

1 Ifv>0 A form of sighum
—1 if v<O (sign) function

.

@(V) =+

Note difference from textbook; also number of neurons in the brain
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McCulloch-Pitts model (cont.)

* Example logic gates (see blackboard)

* McCulloch-Pitts networks (introduced in 1943) are the first
class of abstract computing machines: finite-state automata
* Finite-state automata can compute any logic (Boolean) function
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Network architecture

* View an NN as a connected, directed graph, which defines
Its architecture
* Feedforward nets: loop-free graph
* Recurrent nets: with loops
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Feedforward net

* Since the input layer
consists of source nodes,
It is typically not
counted when we talk
about the number of
layers in a feedforward
net

* For example, the
architecture of 10-4-2
counts as a two-layer net

Input layer Layer of Layer of
of source hidden output
nodes neurons neurons
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A one-layer recurrent net

1 1 1 1 Unit-time delay
._—\ operators
@ FO—D- . .
. A In this net, the input
typically sets the initial
d ._;Q-k condition of the output

layer
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Network components

* Three components characterize a neural net
* Architecture
* Activation function
* Learning rule (algorithm)
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CSE 5526: Introduction to Neural Networks

Perceptrons
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Perceptrons

* Architecture: one-layer feedforward net
* Without loss of generality, consider a single-neuron perceptron

v @(+) Output
ey
Hard ‘

limiter

[nputs <
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Definition

y = (V)
m
V = Zwi X; +b
W) (1 if v>0
=4
v —1 otherwise

Hence a McCulloch-Pitts neuron, but with real-valued inputs
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Pattern recognition

With a bipolar output, the perceptron performs a 2-class
classification problem

* Apples vs. oranges
How do we learn to perform a classification problem?

Task: The perceptron is given pairs of input X, and desired
output d;. How to find w (with b incorporated) so that

y,=d,, forall p?
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Decision boundary

* The decision boundary for a given w:

g(x) =Y WX +b=0
1=1

* gisalso called the discriminant function for the perceptron, and it is
a linear function of x. Hence it is a linear discriminant function
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e See blackboard
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Example

22



Decision boundary (cont.)

For an m-dimensional input space, the decision boundary is
an (m — 1)-dimensional hyperplane perpendicular to w. The
hyperplane separates the input space into two halves, with
one half having y = 1, and the other half having y = 1

* When b =0, the hyperplane goes through the origin
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Linear separability

* For aset of input patterns x,, If there exists one w that
separates d = 1 patterns from d = -1 patterns, then the
classification problem is linearly separable

* In other words, there exists a linear discriminant function that
produces no classification error

* Examples: AND, OR, XOR (see blackboard)
* A very important concept
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Linear separability: a more general illustration

Decision
/" Boundary
/

(b)
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Perceptron learning rule

e Strengthen an active synapse if the postsynaptic neuron fails
to fire when it should have fired; weaken an active synapse if
the neuron fires when it should not have fired

* Formulated by Rosenblatt based on biological intuition
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Quantitatively

w(n+1) =w(n)+ Aw(n)

=w(n) +7[d(n)—y(n)]x(n)

« N:iteration number
o 1. step size or learning rate

In vector form

Aw =77[d — y]X
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Geometric interpretation

* Assumen =1/2
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x:d=1
o:d=-1

28



Geometric interpretation

* Assumen =1/2

X2 x:d=1
o:d=-1

Part |

29



Geometric interpretation

* Assumen =1/2

X2 x:d=1
o:d=-1

Part |

30



Geometric interpretation
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Geometric interpretation

* Assumen =1/2

X2 x:d=1
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Geometric interpretation

X2 x:d=1
o:d=-1

w(3)

Each weight update moves w closer to d = 1 patterns, or away
from d = -1 patterns. w(3) solves the classification problem
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Perceptron convergence theorem

Theorem: If a classification problem is linearly separable, a

perceptron will reach a solution in a finite number of
Iterations

* [Proof]

Given a finite number of training patterns, because of linear separability,
there exists a weight vector w, so that

T
dpwoxp2a>0 (1)
- T
where ¢ = mlnp(d pWoXp)
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Proof (cont.)

* We assume that the initial weights are all zero. Let N, denote
the number of times x, has been used for actually updatlng
the weight vector at some point in learning

At that time:

W= ZNp[n(dp - yp)xp]
p

- ZUZdipo
p
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Proof (cont.)

e Consider w,w first
wow =27 N d WX,
p
due to (1) > 277052 N :
P
= 2noP

where P:ZNp
P
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(2)
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Proof (cont.)

e Now consider the change in square length |w|” after a single
update by X:

Aw]” = [w+ aw]" — |w]" = w + 2nex]” ~ w]
— 4772HxH2 +4ndw' x

<4n’p

where S = mapopoZ
Since upon an update, d(w'™x) <0
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Proof (cont.)

* By summing |w|’ for P steps we have the bound:

i < 4n*pP ®

* Now square the cosine of the angle between w, and w, we
have by (2) and (3)

1> (WIW)2 S 4772052P2 B a’P

| A T T e A

Cauchy-Schwarz inequality
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Proof (cont.)

* Thus, P must be finite to satisfy the above inequality. This
completes the proof

e Remarks

* In the case of w(0) = 0, the learning rate has no effect on the proof.
That is, the theorem holds no matter what 7 (# > 0) is

* The solution weight vector is not unique
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Generalization

* Performance of a learning machine on test patterns not used
during training

* Example: Class 1: handwritten “m”: class 2: handwritten “n”
* See blackboard

* Perceptrons generalize by deriving a decision boundary in
the Input space. Selection of training patterns is thus
Important for generalization
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