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CSE 5526: Introduction to Neural Networks

Boltzmann Machines



Introduction

• Boltzmann machine is a stochastic learning machine that 
consists of visible and hidden units and symmetric 
connections

• The network can be layered and visible units can be either 
input or output

Part VII 2

input

hidden

visible



Another architecture
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Stochastic neurons

• Definition:

𝑥𝑥𝑖𝑖 = � 1 with prob. 𝜑𝜑 𝑣𝑣𝑖𝑖
−1 with prob. 1 − 𝜑𝜑(𝑣𝑣𝑖𝑖)

• For symmetric connections, i.e. 𝑤𝑤𝑗𝑗𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑗𝑗, there is an energy 
function:

𝐸𝐸(𝐱𝐱) = −
1
2
�
𝑖𝑖

�
𝑗𝑗

𝑤𝑤𝑗𝑗𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
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Boltzmann-Gibbs distribution

• Consider a physical system with a large number of states. 
Let 𝑝𝑝𝑖𝑖 denote the prob. of occurrence of state 𝑖𝑖 of the 
stochastic system. Let 𝐸𝐸𝑖𝑖 denote the energy of state 𝑖𝑖

• From statistical mechanics, when the system is in thermal 
equilibrium, it satisfies the Boltzmann-Gibbs distribution

𝑝𝑝𝑖𝑖 =
1
𝑍𝑍

exp(−
𝐸𝐸𝑖𝑖
𝑇𝑇

)

and

𝑍𝑍 = �
𝑖𝑖

exp(−
𝐸𝐸𝑖𝑖
𝑇𝑇

)

• Z is called the partition function, and 𝑇𝑇 is called the temperature
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Remarks

• Lower energy states have higher prob. of occurrences
• As 𝑇𝑇 decreases, the prob. is concentrated on a small subset 

of low energy states
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Boltzmann machines

• Boltzmann machines use stochastic neurons
• For neuron 𝑖𝑖:

𝑣𝑣𝑖𝑖 = �
𝑗𝑗

𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗

• A bias term can be included

𝜑𝜑 𝑣𝑣 =
1

1 + exp(−2𝑣𝑣
𝑇𝑇 )
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Objective of Boltzmann machines

• The primary goal of Boltzmann learning is to produce a 
network that correctly models the probability distribution of 
visible neurons
• Such a net can be used for pattern completion, part of associative 

memory, among other tasks
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Positive and negative phases

• Divide the entire net into the subset 𝐱𝐱𝛼𝛼 of visible units and 
𝐱𝐱𝛽𝛽 of hidden units. There are two phases to the learning 
process:
1. Positive phase: the net operates in the “clamped” condition, where 

visible units take on training patterns with the desired prob. 
distribution

2. Negative phase: the net operates freely without the influence of 
external input
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Positive and negative phases (cont.)

• In the negative phase, the prob. of having visible units in 
state α is

𝑃𝑃(𝐱𝐱𝛼𝛼) =
1
𝑍𝑍
�
𝐱𝐱𝛽𝛽

exp −
𝐸𝐸 𝐱𝐱
𝑇𝑇

which is the marginal distribution
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Learning

• By adjusting the weight vector 𝐰𝐰, the objective of 
Boltzmann learning is to maximize the likelihood of the 
visible units taking on training patterns during the negative 
phase

• Assuming that each pattern of the training sample is 
statistically independent. The log prob. of the training 
sample is:

𝐿𝐿 𝐰𝐰 = log�
𝐱𝐱𝛼𝛼

𝑃𝑃(𝐱𝐱𝛼𝛼) = �
𝐱𝐱𝛼𝛼

log𝑃𝑃(𝐱𝐱𝛼𝛼)

= �
𝐱𝐱𝛼𝛼

log�
𝐱𝐱𝛽𝛽

exp −
𝐸𝐸 𝐱𝐱
𝑇𝑇

− log�
𝐱𝐱

exp −
𝐸𝐸 𝐱𝐱
𝑇𝑇
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Learning (cont.)

𝜕𝜕𝜕𝜕(𝐰𝐰)
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

= �
𝐱𝐱𝛼𝛼

𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗𝑖𝑖

log�
𝐱𝐱𝛽𝛽

exp −
𝐸𝐸 𝐱𝐱
𝑇𝑇

−
𝜕𝜕

𝜕𝜕𝑤𝑤𝑗𝑗𝑖𝑖
log�

𝐱𝐱

exp −
𝐸𝐸 𝐱𝐱
𝑇𝑇

= �
𝐱𝐱𝛼𝛼

− 1
𝑇𝑇∑𝐱𝐱𝛽𝛽 exp −𝐸𝐸 𝐱𝐱

𝑇𝑇
𝜕𝜕𝐸𝐸 𝐱𝐱
𝜕𝜕𝑤𝑤𝑗𝑗𝑖𝑖

∑𝐱𝐱𝛽𝛽 exp −𝐸𝐸 𝐱𝐱
𝑇𝑇

+

1
𝑇𝑇∑𝐱𝐱 exp −𝐸𝐸 𝐱𝐱

𝑇𝑇
𝜕𝜕𝐸𝐸 𝐱𝐱
𝜕𝜕𝑤𝑤𝑗𝑗𝑖𝑖

∑𝐱𝐱 exp −𝐸𝐸 𝐱𝐱
𝑇𝑇
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𝜕𝜕𝐸𝐸(𝐱𝐱)
𝜕𝜕𝑤𝑤𝑗𝑗𝑖𝑖

= −𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖



Gradient of log probability

• We have

𝜕𝜕𝐿𝐿(𝐰𝐰)
𝜕𝜕𝑤𝑤𝑗𝑗𝑖𝑖

=
1
𝑇𝑇
�
𝐱𝐱𝛼𝛼

�
𝐱𝐱𝛽𝛽

exp −𝐸𝐸 𝐱𝐱
𝑇𝑇 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖

∑𝐱𝐱𝛽𝛽 exp −𝐸𝐸 𝐱𝐱
𝑇𝑇

−
∑𝐱𝐱 exp −𝐸𝐸 𝐱𝐱

𝑇𝑇 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖
𝑍𝑍

=
1
𝑇𝑇
�
𝐱𝐱𝛼𝛼

�
𝐱𝐱𝛽𝛽

exp −𝐸𝐸 𝐱𝐱
𝑇𝑇 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖

∑𝐱𝐱𝛽𝛽 exp −𝐸𝐸 𝐱𝐱
𝑇𝑇

−�
𝐱𝐱

𝑃𝑃(𝐱𝐱)𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖
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Gradient of log probability (cont.)

=
1
𝑇𝑇
�
𝐱𝐱𝛼𝛼

�
𝐱𝐱𝛽𝛽

𝑃𝑃 𝐱𝐱𝛽𝛽 𝐱𝐱𝛼𝛼 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖 −< 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖 >

=
1
𝑇𝑇
𝜌𝜌𝑗𝑗𝑖𝑖+ − 𝜌𝜌𝑗𝑗𝑖𝑖−

where 𝜌𝜌𝑗𝑗𝑖𝑖+ = ∑𝐱𝐱𝛼𝛼 ∑𝐱𝐱𝛽𝛽 𝑃𝑃 𝐱𝐱𝛽𝛽 𝐱𝐱𝛼𝛼 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖
is the mean correlation between neurons i and j when the 
machine operates in the positive phase

𝜌𝜌𝑗𝑗𝑖𝑖− =< 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖 > is the mean correlation between i and j
when the machine operates in the negative phase
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Maximization of 𝐿𝐿 𝐰𝐰

• To maximize 𝐿𝐿 𝐰𝐰 , we use gradient ascent:

△𝑤𝑤𝑗𝑗𝑖𝑖 = 𝜀𝜀
𝜕𝜕𝐿𝐿 𝐰𝐰
𝜕𝜕𝑤𝑤𝑗𝑗𝑖𝑖

=
𝜀𝜀
𝑇𝑇
𝜌𝜌𝑗𝑗𝑖𝑖+ − 𝜌𝜌𝑗𝑗𝑖𝑖−

= 𝜂𝜂 𝜌𝜌𝑗𝑗𝑖𝑖+ − 𝜌𝜌𝑗𝑗𝑖𝑖−

where the learning rate 𝜂𝜂 incorporates the temperature 𝑇𝑇

• Remarks: The Boltzmann learning rule is a local rule, 
concerning only “presynaptic” and “ postsynaptic” neurons
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Gibbs sampling and simulated annealing

• Consider a K-dimensional random vector 𝐱𝐱 = (𝑥𝑥1 , … , 𝑥𝑥𝐾𝐾 )𝑇𝑇. 
Suppose we know the conditional distribution 𝑥𝑥𝑘𝑘 given the 
values of the remaining random variables. Gibbs sampling 
operates in iterations
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Gibbs sampling

• For iteration n:
𝑥𝑥1 𝑛𝑛 is drawn from the conditional distribution of 𝑥𝑥1
given 𝑥𝑥2 𝑛𝑛 − 1 , 𝑥𝑥3 𝑛𝑛 − 1 ,…, 𝑥𝑥𝐾𝐾 𝑛𝑛 − 1
…
𝑥𝑥𝑘𝑘(𝑛𝑛) is drawn from the conditional distribution of 𝑥𝑥𝑘𝑘
given 𝑥𝑥1 𝑛𝑛 , 𝑥𝑥2 𝑛𝑛 ,..., 𝑥𝑥𝑘𝑘−1 𝑛𝑛 , 𝑥𝑥𝑘𝑘+1 𝑛𝑛 − 1 ,..., 𝑥𝑥𝐾𝐾 𝑛𝑛 − 1
…
𝑥𝑥𝐾𝐾(𝑛𝑛) is drawn from the conditional distribution of 𝑥𝑥𝐾𝐾
given 𝑥𝑥1 𝑛𝑛 ,..., 𝑥𝑥𝐾𝐾−1 𝑛𝑛
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Gibbs sampling (cont.)

• In other words, each iteration samples a random variable 
once in the natural order, and newly sampled values are used 
immediately (i.e., asynchronous sampling)
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Prob. of flipping a single neuron

• For Boltzmann machines, each step of Gibbs sampling 
corresponds to updating a single stochastic neuron

• Equivalently, we can consider the prob. of flipping a single 
neuron i:

𝑃𝑃 𝑥𝑥𝑖𝑖 → −𝑥𝑥𝑖𝑖 =
1

1 + exp ∆𝐸𝐸𝑖𝑖
𝑇𝑇

where ∆𝐸𝐸𝑖𝑖 is the energy change due to the flip (proof is a homework 
problem)

• So a change that decreases the energy is more likely than that 
increasing the energy
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Simulated annealing

• As the temperature T decreases, the average energy of a 
stochastic system tends to decrease. It reaches the global 
minimum as 𝑇𝑇 → 0

• So for optimization problems, we should favor very low 
temperatures. On the other hand, convergence to thermal 
equilibrium is very slow at low temperature due to trapping 
at local minima

• Simulated annealing is a stochastic optimization technique 
that gradually decreases 𝑇𝑇. In this case, the energy is 
interpreted as the cost function and the temperature as a 
control parameter
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Simulated annealing (cont.)

• No guarantee for the global minimum, but higher chances for 
lower local minima

• Boltzmann machines use simulated annealing to gradually 
lower T
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Simulated annealing algorithm

• The entire algorithm consists of the following nested loops:
1. Many epochs of adjusting weights
2. For each epoch, compute < 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 > for each clamped state for a 

single training pattern, and a free-running, unclamped state
3. For each state, using simulated annealing by gradually decreasing T
4. For each T, update the entire net for a number of times with Gibbs 

sampling

• Boltzmann machines are extremely slow, but potentially 
effective. Because of its computational complexity, the 
algorithm has only been applied to toy problems
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An example

• The encoder 
problem (see 
blackboard)
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