
Scaling Distributed DNN Training for Large Images

CSE 5249

Tom Ballas, Zhengqi(Drago) Dong, and Arpan Jain

The Ohio State University

E-mail: ballas.13@osu.edu, dong.760@osu.edu, and jain.575@osu.edu,

Background

CSE 5249 3Network Based Computing Laboratory

Why Deep Learning?

Courtesy: https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-

deep-learning-1pcv3zeg, https://blog.dataiku.com/when-and-when-not-to-use-deep-learning

• Domain:

• Machine Learning(ML) is a subset of AI,

and DL is a subset of ML

• AI vs ML vs DL

• AI is instructed based on Intelligent system

• Machine Learning is based on statistical

modeling

• Deep Learning is based on learning data

representation.

• Why Deep Learning?

• Can learn(hidden pattern) from data by itself

• Can solve more complex task, e.g., Image

classification, NLP, or speech recognition.

• Reduce human effort of feature engineering

– A transformation from “Feature

Engineering” to “Network Engineering”

https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://blog.dataiku.com/when-and-when-not-to-use-deep-learning

CSE 5249 4Network Based Computing Laboratory

Why Distributed Deep Learning?

• The need for Parallel and Distributed Training

• Large scales DNNs model require a lot of memory and a lot of computation

• Single GPU training cannot keep up with ever-larger models

• Larger models cannot fit a GPU’s memory ➔ Can be solved with Model Parallelism

• Data Parallelism

• Involves replicating the entire model across multiple devices and then distributing the data across the devices

• Model Parallelism

• Involves splitting the model among GPUs and use the same data for each model

Courtesy: https://www.youtube.com/watch?v=4y0TDK3KoCA, Sergeev, Alexander, and Mike Del Balso.

"Horovod: fast and easy distributed deep learning in TensorFlow." arXiv preprint arXiv:1802.05799 (2018).

https://www.youtube.com/watch?v=4y0TDK3KoCA

Methodologies: MPI(Message Passing
Interface)

CSE 5249 6Network Based Computing Laboratory

• Concept:

– Size: e.g. comm.Get_size()

– Rank: e.g., comm.Get_rank()

– Blocking/non-blocking operations

• Point-to-point Communication

– Send: e.g. comm.send(obj, dest, tag=0)

– Recv: e.g.

comm.recv(source=MPI.ANY_SOURCE,

tag=MPI_ANY_TAG, status=None)

MPI Operations

• Collective Communication

– Barrier: e.g., comm.barrier()

– Broadcast: e.g. comm.bcast(obj, root=0)

– Scatter: e.g. comm.scatter(sendobj, root=0)

– Gather: e.g., comm.gather(sendobj, root=0)

– All Gather: e.g. comm.allgather(sendobj)

– All to All: e.g. comm.alltoall(sendobj)

– Reduce: e.g. comm.reduce(sendobj,

op=MPI.SUM, root=0)

– Allreduce: e.g. comm.allreduce(sendobj,

op=MPI.SUM)

– etc…

CSE 5249 7Network Based Computing Laboratory

• Reduce: e.g. comm.reduce(sendobj, op=MPI.SUM,

root=0)

– involves reducing a set of numbers into a

smaller set of numbers via a function.

– It takes an array of input elements on each

process and returns an array of output elements

to the root process.

• AllReduce: comm.allreduce(sendobj,

op=MPI.SUM)

– Identical to Reduce except we don’t need to

specify a root process id, since the results are

distributed to all processor

Collective Communication: MPI Reduce and Allreduce

Courtesy: https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/

https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/

Methodologies: Data/Model parallelism

CSE 5249 9Network Based Computing Laboratory

Data Parallelism: Definition

• What is Data Parallelism?

• Involves replicating a model across multiple
devices and then distributing the data across the
devices

• Each worker/machine have entire copy of model
but only portion of data.

• The weights and biases are
synchronized/averaged across all devices via
AllReduce operation which is provided by MPI
(Message Passing Interface)

• The trade-off of Data parallelism

• Allow higher parallelization and
efficiencies(faster in time) than model parallelism

• More popular and easier to implement than model
parallelism

• Cannot used for model’s size larger than the
memory

Courtesy: Sergeev, Alexander, and Mike Del Balso. "Horovod: fast and easy distributed deep learning in

TensorFlow." arXiv preprint arXiv:1802.05799 (2018).

CSE 5249 10Network Based Computing Laboratory

• What is Model Parallelism

o The model is partitioned and distributed

across multiple devices/machines, and each

device works on a part of the model.

• The need for Model parallelism:

o Used for model that is too large to fit a single

GPU (e.g. BERT-320M, GPT-110M , GPT2-

1.5B, GPT3-175B parameters)

• Challenges for Model parallelism:

o Need to change the forward/backward pass

into a distributed fashion across multiple

GPUs, because the explicitly communication

is needed between each partition.

Model Parallelism: Definition

Image Size Throughput on

V100 (sec/sample)

Throughput on

K80 (sec/sample)

64x64 0.0186 0.0316

128x128 0.0188 0.0533

256x256 0.0232 0.1069

512x512 0.0548 0.3005

1024x1024 0.1899 1.0024

2048x2048 0.7449 N/A

4096x4096 N/A N/A

Courtesy: http://web.cse.ohio-state.edu/~panda.2/5194/slides/5194-

au20-dl-intro.pdf
Note: K80 has 12 GB of memory and V100 has 32 GB. All above

training used batch_size of 1.

http://web.cse.ohio-state.edu/~panda.2/5194/slides/5194-au20-dl-intro.pdf

Methodologies: U-Net Implementation

CSE 5249 12Network Based Computing Laboratory

• Typically neural network allows us to split

groups of layers across devices

• However, certain models present challenges

in model splitting

• Example: ResNet utilizes skip connections to

mitigate effects of vanishing gradient

problem

– Can split based on residual blocks instead of

layers

Splitting Model: ResNet

Image from: (Han et. al, 2018)

CSE 5249 13Network Based Computing Laboratory

• UNet architecture presents

different challenge

– The output of a layer can be

the input to MULTIPLE other

layers

– Option 1: Partition Horizontally

– Option 2: Partition Vertically

Splitting Model: UNet

Image from: (Ronneberger et. al, 2018)

CSE 5249 14Network Based Computing Laboratory

UNet (Our Implementation)

0

1 2

3 4

5 6

7 8 9

10 11

12 13

14 15

16 17

Block: Sequential model with one or more layers

Block

CSE 5249 15Network Based Computing Laboratory

Model Parallelism (Naive)

0

1 2

3 4

5 6

7 8 9

10 11

12 13

14 15

16 17

GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 GPU8

CSE 5249 16Network Based Computing Laboratory

Model Parallelism (Model-Aware)

0

1 2

3 4

5 6

7 8 9

10 11

12 13

14 15

16 17

GPU1 GPU2 GPU3 GPU4 GPU8GPU5 GPU6 GPU7

CSE 5249 17Network Based Computing Laboratory

Result

Image
Size

Sequential Model Parallelism
(Naive)

Model Parallelism
(Model Aware)

64 0.07481 0.19 0.19

128 0.128 0.24 0.236

256 0.346 0.5424 0.49

512 1.3 1.44 1.48

640 OOM 1.9 1.92

768 OOM 2.76 2.81

1024 OOM OOM 5.96

2048 OOM

V100 GPUs with 16 GB HBM

Model Parallelism on 8 GPUs

CSE 5249 18Network Based Computing Laboratory

• Most of the State-of-art Deep Neural Networks are trained using Distributed

DNN training

– GPT3, T5, AmoebaNet, Megatron, Cosmoflow

• UNet has long skip connections that makes model-parallelism implementation

challenging

• We showed sequential training and model-parallelism performance for a basic

UNet architecture.

• Future Work

– Try UNet with more number of layers and filters

– Improve performance of model-parallelism using pipeline parallelism or GEMS-MASTER.

Conclusion

CSE 5249 19Network Based Computing Laboratory

[1]: Vishnu, Abhinav, Charles Siegel, and Jeffrey Daily. "Distributed tensorflow with MPI." arXiv preprint arXiv:1603.02339 (2016).

[2]: Sergeev, Alexander, and Mike Del Balso. "Horovod: fast and easy distributed deep learning in TensorFlow." arXiv preprint

arXiv:1802.05799 (2018).

[3]: Ammar Ahmad Awan, Arpan Jain, Quentin Anthony, Hari Subramoni, Dhabaleswar K. Panda. HyPar-Flow: Exploiting MPI and Keras for

Scalable Hybrid-Parallel DNN Training with TensorFlow. in ISC HIGH PERFORMANCE 2020

[4]: Huang, Yanping, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, and

Yonghui Wu. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." In Advances in Neural Information Processing

Systems, pp. 103-112. 2019.

[5]: Arpan Jain, Ammar Ahmad Awan, Asmaa Aljuhani, Jahanzeb Hashmi, Quentin Anthony, Hari Subramoni, Dhabaleswar K. Panda, Raghu

Machiraju, Anil Parwani. “GEMS: GPU Enabled Memory Aware Model Parallelism System for Distributed DNN Training.” in SuperComputing

2020.

[6]: Han, Seung & Park, Gyeong & Lim, Woohyung & Kim, Myoung & Na, Jung-Im & Park, Ilwoo & Chang, Sung. (2018). Deep neural networks

show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of

onychomycosis datasets by region-based convolutional deep neural network. PLOS ONE. 13. e0191493. 10.1371/journal.pone.0191493.

[7]: O. Ronneberger, P.Fischer, & T. Brox (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image

Computing and Computer-Assisted Intervention (MICCAI) (pp. 234–241). Springer.

References

CSE 5249 20Network Based Computing Laboratory

Thank You!

ballas.13@osu.edu

dong.760@osu.edu

jain.575@osu.edu

mailto:awan.10@osu.edu
mailto:awan.10@osu.edu

CSE 5249 21Network Based Computing Laboratory

• Step1: Data Propagation

- Distributed the Data among GPUs

• Step2: Forward Backward Pass

- Perform forward pass and calculate the

predicted value

- Compute the error by comparing the

prediction with ground truth label

- Perform backward propagation and

compute the gradients

• Step3: Gradient Aggregation

- Call MPI_Allreduce to reduce the local

gradients

- Update parameters locally using global

gradietns

2. Data Parallelism: AllReduce

21
Courtesy: http://web.cse.ohio-state.edu/~panda.2/5194/slides/5194-au20-dl-intro.pdf

http://web.cse.ohio-state.edu/~panda.2/5194/slides/5194-au20-dl-intro.pdf

CSE 5249 22Network Based Computing Laboratory

3. Model Parallelism: HyPar-Flow (support Residual Connection)

22

Courtesy: Ammar Ahmad Awan, Arpan Jain, Quentin Anthony, Hari Subramoni, Dhabaleswar K. Panda. HyPar-Flow: Exploiting MPI and Keras for

Scalable Hybrid-Parallel DNN Training with TensorFlow. in ISC HIGH PERFORMANCE 2020

CSE 5249 23Network Based Computing Laboratory

Collective Communication Operations:

CSE 5249 24Network Based Computing Laboratory

Device Info: sky-k80 vs bdw-v100

