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Why Deep Learning?

Courtesy: https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-

deep-learning-1pcv3zeg, https://blog.dataiku.com/when-and-when-not-to-use-deep-learning

• Domain:

• Machine Learning(ML) is a subset of AI, 

and DL is a subset of ML

• AI vs ML vs DL

• AI is instructed based on Intelligent system

• Machine Learning is based on statistical 

modeling

• Deep Learning is based on learning data 

representation.

• Why Deep Learning?

• Can learn(hidden pattern) from data by itself

• Can solve more complex task, e.g., Image 

classification, NLP, or speech recognition.

• Reduce human effort of feature engineering 

– A transformation from “Feature 

Engineering” to “Network Engineering”

https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://blog.dataiku.com/when-and-when-not-to-use-deep-learning
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Why Distributed Deep Learning?

• The need for Parallel and Distributed Training

• Large scales DNNs model require a lot of memory and a lot of computation 

• Single GPU training cannot keep up with ever-larger models  

• Larger models cannot fit a GPU’s memory ➔ Can be solved with Model Parallelism

• Data Parallelism

• Involves replicating the entire model across multiple devices and then distributing the data across the devices

• Model Parallelism

• Involves splitting the model among GPUs and use the same data for each model

Courtesy: https://www.youtube.com/watch?v=4y0TDK3KoCA, Sergeev, Alexander, and Mike Del Balso. 

"Horovod: fast and easy distributed deep learning in TensorFlow." arXiv preprint arXiv:1802.05799 (2018). 

https://www.youtube.com/watch?v=4y0TDK3KoCA


Methodologies: MPI(Message Passing 
Interface)
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• Concept:

– Size: e.g. comm.Get_size()

– Rank: e.g., comm.Get_rank()

– Blocking/non-blocking operations

• Point-to-point Communication

– Send: e.g. comm.send(obj, dest, tag=0)

– Recv: e.g. 

comm.recv(source=MPI.ANY_SOURCE, 

tag=MPI_ANY_TAG, status=None)

MPI Operations

• Collective Communication

– Barrier: e.g., comm.barrier()

– Broadcast: e.g. comm.bcast(obj, root=0)

– Scatter: e.g. comm.scatter(sendobj, root=0)

– Gather: e.g., comm.gather(sendobj, root=0)

– All Gather: e.g. comm.allgather(sendobj)

– All to All: e.g. comm.alltoall(sendobj)

– Reduce: e.g. comm.reduce(sendobj, 

op=MPI.SUM, root=0)

– Allreduce: e.g. comm.allreduce(sendobj, 

op=MPI.SUM)

– etc…
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• Reduce: e.g. comm.reduce(sendobj, op=MPI.SUM, 

root=0)

– involves reducing a set of numbers into a 

smaller set of numbers via a function.

– It takes an array of input elements on each 

process and returns an array of output elements 

to the root process.

• AllReduce: comm.allreduce(sendobj, 

op=MPI.SUM)

– Identical to Reduce except we don’t need to 

specify a root process id, since the results are 

distributed to all processor

Collective Communication: MPI Reduce and Allreduce

Courtesy: https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/

https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/


Methodologies: Data/Model parallelism
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Data Parallelism: Definition

• What is Data Parallelism?

• Involves replicating a model across multiple 
devices and then distributing the data across the 
devices

• Each worker/machine have entire copy of model 
but only portion of data. 

• The weights and biases are 
synchronized/averaged across all devices via 
AllReduce operation which is provided by MPI 
(Message Passing Interface)

• The trade-off of Data parallelism

• Allow higher parallelization and 
efficiencies(faster in time) than model parallelism

• More popular and easier to implement than model 
parallelism

• Cannot used for model’s size larger than the 
memory

Courtesy: Sergeev, Alexander, and Mike Del Balso. "Horovod: fast and easy distributed deep learning in 

TensorFlow." arXiv preprint arXiv:1802.05799 (2018).
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• What is Model Parallelism

o The model is partitioned and distributed 

across multiple devices/machines, and each 

device works on a part of the model.

• The need for Model parallelism:

o Used for model that is too large to fit a single 

GPU (e.g. BERT-320M, GPT-110M , GPT2-

1.5B, GPT3-175B parameters)

• Challenges for Model parallelism:

o Need to change the forward/backward pass 

into a distributed fashion across multiple 

GPUs, because the explicitly communication 

is needed between each partition.

Model Parallelism: Definition

Image Size Throughput on 

V100 (sec/sample)

Throughput on 

K80 (sec/sample)

64x64 0.0186 0.0316

128x128 0.0188 0.0533

256x256 0.0232 0.1069

512x512 0.0548 0.3005

1024x1024 0.1899 1.0024

2048x2048 0.7449 N/A

4096x4096 N/A N/A

Courtesy: http://web.cse.ohio-state.edu/~panda.2/5194/slides/5194-

au20-dl-intro.pdf
Note: K80 has 12 GB of memory and V100 has 32 GB. All above 

training used batch_size of 1.

http://web.cse.ohio-state.edu/~panda.2/5194/slides/5194-au20-dl-intro.pdf


Methodologies: U-Net Implementation
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• Typically neural network allows us to split 

groups of layers across devices

• However, certain models present challenges 

in model splitting 

• Example: ResNet utilizes skip connections to 

mitigate effects of vanishing gradient 

problem

– Can split based on residual blocks instead of 

layers

Splitting Model: ResNet

Image from: (Han et. al, 2018) 
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• UNet architecture presents 

different challenge

– The output of a layer can be 

the input to MULTIPLE other 

layers

– Option 1: Partition Horizontally

– Option 2: Partition Vertically

Splitting Model: UNet

Image from: (Ronneberger et. al, 2018) 
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UNet (Our Implementation)
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Model Parallelism (Naive) 
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Model Parallelism (Model-Aware) 
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Result

Image 
Size

Sequential Model Parallelism 
(Naive)

Model Parallelism
(Model Aware)

64 0.07481 0.19 0.19

128 0.128 0.24 0.236

256 0.346 0.5424 0.49

512 1.3 1.44 1.48

640 OOM 1.9 1.92

768 OOM 2.76 2.81

1024 OOM OOM 5.96

2048 OOM

V100 GPUs with 16 GB HBM 

Model Parallelism on 8 GPUs
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• Most of the State-of-art Deep Neural Networks are trained using Distributed 

DNN training 

– GPT3, T5, AmoebaNet, Megatron, Cosmoflow

• UNet has long skip connections that makes model-parallelism implementation 

challenging 

• We showed sequential training and model-parallelism performance for a basic 

UNet architecture.

• Future Work

– Try UNet with more number of layers and filters 

– Improve performance of model-parallelism using pipeline parallelism or GEMS-MASTER. 

Conclusion
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Thank You!
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• Step1: Data Propagation

- Distributed the Data among GPUs

• Step2: Forward Backward Pass

- Perform forward pass and calculate the 

predicted value

- Compute the error by comparing the 

prediction with ground truth label

- Perform backward propagation and 

compute the gradients

• Step3: Gradient Aggregation

- Call MPI_Allreduce to reduce the local 

gradients

- Update parameters locally using global 

gradietns

2. Data Parallelism: AllReduce

21
Courtesy: http://web.cse.ohio-state.edu/~panda.2/5194/slides/5194-au20-dl-intro.pdf

http://web.cse.ohio-state.edu/~panda.2/5194/slides/5194-au20-dl-intro.pdf
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3. Model Parallelism: HyPar-Flow (support Residual Connection)

22

Courtesy: Ammar Ahmad Awan, Arpan Jain, Quentin Anthony, Hari Subramoni, Dhabaleswar K. Panda. HyPar-Flow: Exploiting MPI and Keras for

Scalable Hybrid-Parallel DNN Training with TensorFlow. in ISC HIGH PERFORMANCE 2020
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Collective Communication Operations:
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Device Info: sky-k80 vs bdw-v100


