
A hybrid filtering movie recommendation system

Zhengqi Dong, Yuntian He
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{dong.760, he.1773}@osu.edu

1 Introduction

With ever-growing volume of information in the Internet, people start to have hard time in finding the
content that they actually want to see, including news, articles, musics, movies, and etc. Recommender
Systems(RSs) is a software tool that provides suggestions for a item to be use to the user. [5] In
everyday life, human will be heavily rely on the recommendation systems to discover the most
interesting and valuable information. The need to build a robust movie recommendation system
is extremely important given the huge demand for personalized content of modern consumer. An
example of recommendation system is such as this:

• User A watches Game of Thrones and Breaking Bad.

• User B does search on Game of Thrones, then the system suggests Breaking Bad from data
collected about user A.

In general, there are three type of RSs: 1) Content-based filtering: Content-based filtering relies on
the "similarity" between two items being recommended. If a user like an Item-A, then the user tend
to in favor of a item similar to Item-A. 2) Collaborative Filtering(CF): The CF use the assumption
that the use who have agreed in the past tend to agree in the future. For example, if the User D bought
an Item-1 and Item-2. In the meantime, User-A, B, C also bough these two items along with another
item Item-3, then it is recommended that Item-3 will be worth purchasing for User-D as well. The CF
system can be further categorized to Memory-based CF (e.g., User-based CF, Item-based CF) and
Model-based CF (e.g., Matrix factorization, Clustering CF, Neural Network-based CF). 3) Hybrid
filtering: A Hybrid filtering refers to the RSs that combines the techniques from former two. [6, 7]

The CF is the most popular and widely adopted techniques for building the recommendation systems,
but there are still many challenges and limitations remain unsolved, such as highly sparse data in very
large product sets, the scalability for growing users and items, responsiveness for newly uploaded
items and the actions taken by user, shilling attacks, and etc. [6]

In this project, we propose a hybrid filtering movie recommendation system that combines the idea
of content-based filtering and collaborative filtering and integrates the representation learned from
multiple sources. Section 2 will give a formal problem statement for movie recommendation. Section
3 will introduce the framework and each module’s functionality. Section 4 presents our experiments
on a real-world movie datasets including metadata of more than 45,000 movies and 26 million ratings.

2 Problem Statement

Here is a formal formulation of the Movie Recommendation Problem. Given a set of users U ,
moviesM, rating score field S, and a rating record set R ⊆ U ×M× S, we aim to provide user
u ∈ U with recommendations on movies inM that he has never watched. In general, there are two
kinds of queries for this problem:

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

• Rating prediction: The goal is to learn a function fs : U ×M→ S to predict the rating
that user u would give to an unseen movie m.

• Top-k recommendation: The goal is to learn a function ft : U →Mk to predict k unseen
movies in which user u might be interested.

Note that the second query can be answered from the first one by simply sorting all movies with
their predicted ratings and confidence scores. Since it is hard to find the ground truth data of top-k
recommendation, in this project we focus on the first query for the problem.

3 System framework

This section introduces the functionalities of the modules of our hybrid filtering recommendation
system. Figure 1 shows the architecture of this workflow and the following subsections describes
the individual modules in our framework. Note that our framework has great flexibility since each
module is independent, one can try multiple alternatives for the desired performance on each module.

Figure 1: System architecture

3.1 Text embedding

A movie metadata usually contains multiple types of textual information, including genres, tags, and
overviews. Here the goal is to learn representations of such textual data to describe the movies. The
intuition is to recommend in a content filtering way such that two movies may be liked by the same
user if their content is similar.

In most cases, genres and tags are words or phrases which is too short and usually used as attributes
rather than a text corpus. Longer textual data such as overviews may represent the main content
of each movie, therefore it is reasonable to leverage it to learn text embeddings. Doc2vec [4],
BERT [1], and CNN [3] are common options for text embedding in data mining tasks. Finally, the
text embedding module will learn a emt-dimensional vector for each movie.

The text embedding algorithm that we use for out implementation is Doc2vec, which was known
as Paragraph Vector in [4]. Doc2vec text embedding is a unsupervised algorithm that can learn
fixed-length feature representation from variable-length of text, such as sentences, paragraphs, and
documents. It consist of several advantages when considering the type of text embedding algorithm
in our project. First, the Doc2vec algorithms is capable in learning vector representation from
unlabeled data and generalize well for data that do not have enough labels. Second, Doc2vec takes
into consideration of word orders while learning the semantic meaning of documents.

2

3.2 Graph contextual embedding

In the metadata of movies, items are associated with attributes of different types. They may have
nominal attributes including genres and production companies, interval attributes such as release date,
ratio attributes such as budgets and revenues. Leveraging these attributes is expected to facilitate the
representation learning of movies.

Graph is a structure that can describe the complex relationship among objects. Motivated by the
success of representation learning of heterogeneous information network (HIN) [2], we created an
HIN with users (U), movies (M), and its selected attributes, i.e., genres (G) and casts/crew (C). The
model first performs random walks in the HIN and feeds the sequence of nodes to a skip-gram model
to learn node embeddings. The intuition is if two users appear together in the sampled walks for
many times, their representations are expected to be very close in the embedding space. Since the
random walk contains different types of nodes, this model recommends in a hybrid way. To capture
both the structural and semantic correlations in the HIN, this model use three metapaths: U-M-U,
U-M-C-M-U, and U-M-G-M-U.

A challenge for directly using traditional information network embedding method in this setting is
that the interaction between users and movies are usually signed (or labeled), which is represented
as ratings. Ratings are numerical values having unique semantics, i.e., a score of 5 is always more
positive than 1. To tackle this, we design a novel rating-aware sampling policy which ensures that
ratings associated with neighboring moves in a random walk are close with high probability. Suppose
a random walk under the metapath U-M-U starts from s0 and traverses through s1, the policy will
sample s2 under this distribution:

P (s2 = Uk|s1 = Mj , s0 = Ui)

= softmax{−|R(Ui,Mj)−R(Uk,Mj)|}

Finally, the graph contextual embedding module will learn a eug-dimensional vector for each user
and a emg-dimensional vector for each movie.

3.3 Classification

The last module is a classifier which takes the learned embeddings of users and movies in the first two
modules as input and predict a rating score. A common option for the classification module is MLP.

4 Experiments

This section will introduce our dataset as well as experimental setup, and evaluate the performance of
our proposed system.

4.1 Dataset

This project uses the Movies dataset from Kaggle1 containing 26 million ratings from 270,000 users
on all the 45,000 movies in the dataset. Besides, the metadata of movies has more than 20 attributes
for each movie. In this project, we only use genre, cast, and crew as movie attributes.

One important step in our data preprocessing is to reduce the number of attributes for movies. The
intuition is that one movie may contains tens or hundreds of casts and crews, but users may be aware
of only the most important ones. We reduce the number of cast of each movie to up to 8, and only
use director as each movie’s crew attribute.

4.2 Experimental setup

4.2.1 Baselines and metrics

We evaluate the performance of our proposed system with different configurations. We use three
different ways to generate the movie embeddings:

1https://www.kaggle.com/rounakbanik/the-movies-dataset. The original dataset was released by MovieLens
website, https://grouplens.org/datasets/movielens/latest/. It is a project run by GroupLens, a NLP research lab at
the Univeristy of Minnesota.

3

• Use text embedding (TEXT)

• Use graph embedding (GRAPH)

• Use both text and graph embedding (BOTH)

We evaluate the performance of these methods using following metrics:

• Mean absolute error (MAE)

MAE =

∑n
i=1

∣∣∣Yi − Ŷi

∣∣∣
n

=

∑n
i=1 |ei|
n

(1)

• Mean squared error (MSE)

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2
=

∑n
i=1 e

2
i

n
(2)

• Accuracy (ACC)

ACC =
Total correct predictions

Total predictions
∗ 100 (3)

4.2.2 Hyperparameters for representation learning

We use doc2vec [4] and metapath2vec [2] as our text and graph contextual embedding modules,
respectively. For metapath2vec, we specifically design the metapaths and rating-aware sampling
policy introduced in Section 3.2. We set emt = emg = eug = 128 for the dimensionalities of learned
embeddings. We set the number of random walks for each user to 60 and the length of each work is
50. For other hyperparameters, we follow the choices used in their paper for the best performance.

4.2.3 Miscellaneous

The rating records are randomly divided into training (90%) and test (10%) set. Only the training
set is used to learn embeddings. We use a three-layer MLP as our classifier, the output size of each
layer is 128, 32, and 10. The classifier is trained for 5 epochs, and the learning rate is 10−3. The
experiments are conducted on a single node of OSC Owens cluster.

4.3 Evaluation

This subsection will investigate the performance of different methods and the impact of parameters
on its performance.

4.3.1 Overall performance

Table 1 shows the results of all methods where the batch size is set to 1000. It shows that method
BOTH outperforms TEXT and GRAPH in terms of all metrics, which is expected since BOTH
leverages both textual and graph contextual information from the dataset. It takes longer time for
training because the input for BOTH’s classifier is larger.

We note that the gap between BOTH and the other two methods is not very large, which can be
explained by the fact that the training set is very big - it has 23 million records for training, which
alleviates the disadvantage of using only single information source (either text or graph). In addition,
all methods use the user embeddings learned from the graph embedding module, which capture each
user’s preference well.

Table 1: Overall Performance

Name MAE MSE ACC Time (sec)
TEXT 0.738 1.092 32.014 735.380
GRAPH 0.719 1.061 33.043 740.422
BOTH 0.713 1.034 33.052 781.779

4

4.3.2 Impact of batch size

In this subsection, we vary the batch size from 500 to 10000 to observe the impact of batch size on
the performance of each method. The results are shown in Figure 2.

500 1000 2000 5000 10000
batch size

0.95

1.00

1.05

1.10

1.15
M

SE
MSE

500 1000 2000 5000 10000
batch size

0.70

0.72

0.74

0.76

M
AE

MAE

500 1000 2000 5000 10000
batch size

0.30

0.31

0.32

0.33

0.34

0.35

AC
C

ACC

500 1000 2000 5000 10000
batch size

0

300

600

900

1200

1500
Ru

nn
in

g
tim

e
Running time

TEXT GRAPH BOTH

Figure 2: Performance with varying batch sizes

We found that when the batch size increases, the value of ACC (or MSE/MAE) of each method
slightly decreases (or increases). While the change is very limited, which demonstrates our method’s
robustness. In addition, when the batch size is larger, each method runs expectedly faster.

5 Conclusion

In this project, we design a hybrid filtering movie recommendation system which provides flexibility
for module selection. We explore the performance of text embedding method by using it as our text
embedding module, and design unique metapaths and a novel rating-aware sampling policy for graph
embedding. Leveraging both text and graph contextual information, the system further improves the
quality of recommendation compared to methods using single information source.

References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
[2] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scalable representation

learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 135–144, 2017.

[3] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[4] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In
International conference on machine learning, pages 1188–1196, 2014.

5

[5] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender systems
handbook. In Recommender systems handbook, pages 1–35. Springer, 2011.

[6] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering techniques. Advances
in artificial intelligence, 2009, 2009.

[7] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender system: A
survey and new perspectives. ACM Computing Surveys (CSUR), 52(1):1–38, 2019.

6

	Introduction
	Problem Statement
	System framework
	Text embedding
	Graph contextual embedding
	Classification

	Experiments
	Dataset
	Experimental setup
	Baselines and metrics
	Hyperparameters for representation learning
	Miscellaneous

	Evaluation
	Overall performance
	Impact of batch size

	Conclusion

