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1. Introduction 

 
The application of deep learning has garnered considerable attention in many fields of             

research, such as image classification, speech recognition, autonomous driving, and cancer           
detection. This can be contributed to not only the attractive property of being able to learn the                 
general feature representations of datasets from scratch but also to massive available datasets             
and advanced computing powers. With such advantages, the field of deep learning is flourishing              
in recent decades and has superseded the performance of many traditional machine learning             
and AI algorithms [2, 3]. 
 

The influence of deep learning is pervasive due to its capability in solving many complex               
tasks while providing state-of-the-art results. However, it faces the challenges of scaling to much              
larger models and datasets, and the traditional training algorithms are inherently sequential and             
cannot be trivially parallelized. The current two strategies to exploit the parallelism in learning              
workload are: 1) Develop parallel and distributed Deep Neural Network (DNN) training models.             
2) Develop parallel hardware architecture for DNN [3, 4]. 
 

Currently, there are three strategies exploited on distributed and parallel DNN models: 1)             
Data parallelism: Replicating the model across multiple devices and then distributing the data             
across the devices. 2) Model parallelism: Instead of partitioning the data, the model will be split                
among multiple devices, and each device will train a model partition on entirely duplicated data.               
3) Hybrid parallelism: Involves integrating the strategies of data and model parallelism, such as              
GEMS-Hybrid [5]. Data parallelism is the most popular and widely adopted mechanism, but it              
fails to diminish the memory size beyond what is required for a single image, and therefore is                 
not applicable for very large samples [7]. In many pathological studies, the high-resolution             
images are required for disease image detection, and the U-Net [6] model is considerably              
attractive in biomedical segmentation applications. In this project we will introduce an innovative             
approach for implementing model parallelism on large samples, which is extensible on the             
U-Net-like architectures.  
 
2. Literature Review 
 

To obtain a better understanding of existing research in distributed DNN models, we             
conducted a literature review on four relevant papers that successfully implemented distributed            
approaches. In the first paper [1], the author proposed the Data Parallelism approach that              
utilizes the optimized communication primitives in Message Passing Interface (MPI) to distribute            
DNN training across multiple machines/GPUs on TensorFlow. Data parallelism involves          
replicating a model across multiple devices and then distributing the data across the devices.              
Figure 1 on the following page illustrates the process of data parallelism. Each device learns               
the model independently without modifying the standard backpropagation algorithm, and the           
weights and biases are synchronized/averaged across all devices via allReduced operation.           
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The allReduced operation is provided by many MPI interfaces, e.g., OpenMPI. Since MPI is              
specialized for Supercomputers communication interface, the overall communication overhead         
can be greatly reduced compared to the sockets interface. 

 

 
Figure 1: Illustration of basic data parallelism algorithm [8] 

 
As rapid growth of the training dataset and the machine learning model, and the              

availability of high-performance multi-core GPUs, the performance of primitive versions of           
TensorFlow cannot satisfy the need of modern business anymore. In the second paper [8], the               
author introduced a new approach to the distributed deep learning library on TensorFlow, called              
Horovod. There are several major chances to the old distributed TensorFlow packages. 1) The              
parameter server approach in the standard distributed TensorFlow packages was replaced by            
the NCLL’s ring-all reduced approach that was originally introduced by Baidu [11]. 2) They              
converted code into a stand-alone package that is compatible with various releases of             
TensorFlow. 3) The Horovod library supports the models to run not only on a single GPU, but                 
also on multiple GPUs. 4) The Horovod library support distributed training on various deep              
learning framework (e.g., PyTorch, MXNet) with minimal modification to the code. As is shown in               
Figure 2, the less number of communication between worker and parameter server scaled the              
training efficiency of original distributed TensorFlow on multi-core GPUs.  
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Figure 2: A benchmarks comparison for multi-core GPU scaling performance on TensorFlow [8] 
 

Although approaches like Horovod offer good performance, they must be used for            
models that reside in the memory of a CPU/GPU. However, there are some larger and deeper                
models that require more memory than what is available on a single CPU/GPU. This has               
caused a need for model parallelism which involves distributing a model across multiple GPUs.              
This means that a layer or multiple layers will be trained on each device. With larger models                 
creating a need for model parallelism approaches, researchers at Google sought to develop an              
approach for model parallelism to train a large deep learning model. However, one of the major                
challenges facing them was that traditional model parallelism suffers from under-utilization of            
GPU resources since at each time only one GPU can perform computations. Figure 3 on the                
following page illustrates this concept. 
 

 
Figure 3: Illustration of the traditional model parallelism approach with both forward ( and)F 0  
backward passes (  on multiple devices (each device is shown as a row).  This shows how)B0  

the resources are underutilized across devices. [9] 
 

To solve this challenge, the researchers wrote an article [9] where they proposed a new               
approach called pipeline parallelism. As is shown in Figure 4, for pipeline parallelism, the data               
that is to be trained on each device is split into multiple batches. This allows for a device to train                    
a small batch and pass to the next device for computation, instead of having to train on all the                   
data before the next device can perform training. The researchers compiled their pipeline             
parallelism approach into a library called GPipe. This approach exhibited success as GPipe             
was used to train a model that achieved a top-1 accuracy of 84.4% on ImageNet-2012. 
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Figure 4: Illustration of the pipeline parallelism approach with both forward (  and)F device, batch  
backward passes (  on multiple devices (each device is shown as a row).  This)Bdevice, batch  

shows how this approach is able to utilize resources better than traditional model parallelism. [9] 
 

While this approach was successful, it did not exhibit the ability to train state-of-the-art              
DNNs like ResNet(s) on High-Performance Computing (HPC) systems. In addition, it does not             
utilize hybrid parallelism which combines data and model parallelism. To solve these            
challenges, researchers at Ohio State published an article [10] that proposed a hybrid             
parallelism approach for HPC systems. Their approach called HyPar-Flow utilizes Horovod for            
data parallelism and implements a pipelining approach for model parallelism. In addition,            
HyPar-Flow takes advantage of HPC optimizations. HyPar-Flow exhibited success in that it            
allowed for a hybrid parallelism approach that saw up to a 1.6X speedup over Horovod-based               
data-parallel training.  

However, despite the success of HyPar-Flow, it is unable to operate on multiple GPUs              
and instead works on multiple CPUs. In addition, the pipeline parallelism approach is limited in               
performance compared to data parallelism, and the length of the pipeline is limited by the batch                
size. To mitigate the pipeline parallelism issues and allow for GPU use, researchers at Ohio               
State published a paper [5] where they propose GEMS (GPU Enabled Memory Aware Model              
Parallelism System). As was discussed with traditional model parallelism, there is a memory             
vacuum during forward and backward propagation. Within GEMS, to utilize this memory, two             
model replicas can be created. The first replica is trained as normal, and the second replica                
uses the free memory and compute to train in an inverted manner. Following forward and               
backward passes for both replicas, the parameters of each model are synchronised similar to              
data parallelism.  This entire proposed process is illustrated in Figure 5.  

 
Figure 5: Illustration of GEMS parallelism approach [5] 
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The GEMS approach exhibited success in that it was used to train a 1000-layer              
ResNet-1k model with 97.32% scaling-efficiency and reduce the training time for ResNet-110-v2            
from seven hours to 28 minutes. 
 
3. Challenges 
 

We now highlight challenges in implementing model parallelism approaches with large           
images for the UNet architecture.  
 
A. General Model Parallelism Challenges  
 

When implementing model parallelism, partitioning the model and implementing         
distributed forward and backward passes are two major challenges. Partitioning the model can             
be challenging as every model is different and the partitioning method needs to support different               
models. In particular, dealing with skip or residual connections in the DNN topology can be a                
complicated task. Implementing distributed forward and backward passes is also difficult. This            
implementation can be especially challenging since existing deep learning frameworks do not            
provide distributed back propagation implementations. 
 
B. Skip Connections 

 
One of the major challenges for partitioning a DNN for model parallelism is dealing with               

skip connections in the DNN topology. A skip connection skips some layer or layers in a neural                 
network and feeds the output of one layer as the input to the next layers (instead of only the                   
next one). In a simple sequential neural network, a model can be easily partitioned as each                
layer only sends an output to one other layer. Therefore, a model can simply be divided into                 
groups of sequential layers to be sent to each GPU, and the output of one partition of layers will                   
provide the input to another partition. However, models with skip connections cannot be             
partitioned in this manner since some layers must send their output to multiple other layers.  
 
C. Load Balancing 

 
Another challenge when partitioning a DNN is determining how to distribute the layers             

across the GPUs. This can be particularly challenging because different applications may            
require a different distribution of layers. Depending on the application, it may be best to balance                
the load based on memory, compute, or a custom configuration. Providing a flexible load              
balancing approach that can be customized to the application is necessary for developing a              
model parallelism approach. 
 
4. Methodologies 
 

To address the challenges discussed in section 3, we performed the following methods             
to implement a model parallelism approach for UNet.  
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A. Distributing DNN in PyTorch 
 

In order to implement model parallelism in PyTorch, the DNN layers need to be              
partitioned to multiple GPUs. In PyTorch, the layers of a neural network can be grouped into                
Sequential modules. When partitioning, we broke a Sequential module containing all layers into             
multiple modules of layers. Each module can be passed to a GPU, and the GPU can train                 
those layers. This method was first used to split a simple PyTorch sequential neural network               
across multiple GPUs. An example illustrating the partitioning of a sequential neural network             
across four GPUs is shown in section A of Figure 6.  
 

Simply dividing a model evenly by layers is effective for simple sequential models, but              
this method is unable to deal with skip connections. A popular model that utilizes skip               
connections is the ResNet model. ResNet utilizes skip connections to allow extremely large             
DNN’s to deal with vanishing gradients. In order to partition ResNet, we took advantage of the                
fact that skip connections in ResNet only pass over a few layers of the DNN. This enables us to                   
designate the layers passed over by each skip connection as blocks, and the model can be                
partitioned by these blocks opposed to being partitioned by layers. This assures that all layers               
within a block are assigned to the same GPU. An example illustrating the concept of               
partitioning a group of ResNet layers is shown in section B of Figure 6. 
 

Other models such as UNet have far longer skip connections than ResNet. These skip              
connections can encompass many layers which makes partitioning these models significantly           
more challenging. We partitioned this model by combining consecutive convolution layers into            
blocks and vertically partitioning the UNet model by the blocks. Vertical partitioning enables             
each GPU to consume roughly the same amount of memory. Since the images are cropped as                
the layers go down the model, if the model was split horizontally, some horizontal partitions               
would handle much larger sized images which would result in certain GPUs consuming far more               
memory than others. In addition, the vertical partitioning method used allows long skip             
connections to be completed as the output of each block can be passed to both the next                 
sequential block and the block across from it when completing a forward pass. Vertical              
partitioning of the UNet model is illustrated in section C of Figure 6.  
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Figure 6: Partitions across 4 GPUs for Basic DNN (A), ResNet (B), and UNet 

Architectures (C) 
 

When partitioning a DNN, load balancing is one of the key approaches to get better               
performance. We developed an approach that would partition the DNN to balance either the              
compute or memory load. Compute load balancing will provide improved performance in            
memory-aware designs as every GPU will complete the forward and backward passes on their              
partition in the same amount of time. However, memory-based load balancing will provide better              
performance when memory consumed by each layer is different and varies a lot. When training               
a DNN on very-large images, the first few layers will consume more memory compared to the                
last layers therefore memory-based load balancing is needed to fit a model inside a few GPUs.  
 
B. Use of MPI in Model Parallelism 
 

Message Passing Interface(MPI) is a standardized and portable message passing          
interface protocol that provides functions on a variety of parallel computers. This protocol             
standardized the syntax and semantics for many message-passing libraries on many           
parallelized computers, e.g., MPICH, OpenMPI, Intel MPI libraries. The specification of MPI            
operations can be roughly categorized to two sets: point-to-point communication and collective            
communication. Point-to-point communication mechanism enables the transmission of data         
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between a pair of processes, where the source point will send the data, and the target point will                  
receive. Some exemplary MPI operations that we had used in our project are MPI_Send and               
MPI_Recv. Point-to-point communication is great for transferring data between two ranks, but it             
is not effective enough for exchanging the data amount of a group of processes. There are a                 
plethora of collective communication operations available, such as MPI_Bcast, MPI_Scatter,          
MPI_Gather, MPI_Allgather, and etc. MPI_Allreduce is a type of collective communication that            
allows us to aggregate the reduced result across all processes and distribute the result to all                
processes. It is an extremely useful operation when implementing the distributed and parallel             
DNN model, where we need to synchronize the local gradient before updating the weight              
parameter on each replica [12]. 
 
C. Integrating Model Parallelism and UNet 
 

When implementing model parallelism for UNet, we first need to determine how to map              
the output of a given layer to its next input. For UNet, this is particularly challenging because an                  
output of a layer may be input to multiple other layers. To accomplish this, we implemented this                 
mapping by storing two lists of key value pairs. The first list was used for forward propagation                 
and used a given layer as the key and a list of layers to send the output to as the value. The                      
second list functioned the same way except the mapping was done for backward propagation.              
In order to communicate between processes, we used asynchronous communication using           
MPI_Isend and MPI_Irecv​. ​Asynchronous communications allow tasks to transfer data          
independently from one another. For example, task 1 can prepare and send a message to               
task 2, and then immediately begin doing other work. When task 2 actually receives the               
data doesn't matter. Asynchronous communications are often referred to as non-blocking           
communications since other work can be done while the communications are taking place”             
[13]. ​These operations ​allow computations and communication to overlap, which leads to            
improved performance. 
 

As was discussed in Section 4, the U-net model can be partitioned in a vertical fashion,                
where the first two and last two residual blocks will be separately stored on different GPUs. This                 
vertical partitioning can be performed so that each GPU will train approximately the same              
number of layers as is shown in Figure 7 below. 
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Figure 7: Naive version of model parallelism 

 
In this naive model partitioning approach, we might leave the last four residual blocks in               

a single GPU, as the number of parameters will decrease as going down to the bottom of the                  
model. However, given the special design of symmetric structure of the U-Net model, the              
number of parameters are accumulated at the first and last few layers and will lead to a huge                  
memory pressure on a single GPU. Thus, we proposed a more advanced partition method,              
Model-Aware model parallelism. As shown in Figure 8 below, we leave the last two residual               
blocks in a single GPU, and bottleneck blocks 6-8 and 9-11 are stored separately on different                
GPUs. In the following result section, we show that the Model-Aware model parallelism             
outperformed the naive model partitioning. 
 

 
Figure 8: Model-aware model parallelism 

 
5. Results 
 

Our model parallelism approach was evaluated by its ability to train a UNet model on               
large images. The approach was tested on 8 V100 GPUs with 16 GB HBM (High Memory                
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Bandwidth). Images with sizes progressing from 64x64 to 2048x2048 pixels were used, and the              
time in seconds required to perform one forward and backward pass of the model for one image                 
of a given size was recorded. Three different approaches were tested. The first method offered               
a baseline as it did not involve distributing the model across multiple GPUs. This method               
resulted in the GPU running out of memory when training on a 640x640 image. The second                
method involved a naive model parallelism approach. In this approach the UNet model was              
evenly vertically partitioned across the GPUs. This method was able to train all images up to a                 
1024x1024 image. The final method tested a model parallelism approach that balanced            
memory load across GPUs. Memory-based load balancing opposed to evenly partitioning           
layers is appropriate for the UNet model since the model’s first few layers will consume more                
memory compared to the last layers. This approach was able to train all images up to                
2048x2048. In addition to being able to train larger images, the model parallelism approaches              
also suffered minimal slowdown when compared to the baseline. The results of all tests are               
shown in Figure 9.  
 

 
Figure 9: UNet model training times for one forward and backward pass of DNN 

 
6.   Conclusion 
  

In this report, we presented an innovative approach for implementing model parallelism            
for training UNet models on large images. When evaluating our proposed design, we found that               
our model parallelism method with memory-based load balancing was able to train UNet models              
with images over double the size of the maximum image size for non-distributed approaches. In               
addition, our model parallelism method suffered minimum slowdown compared to the           
non-distributed approaches. Overall, these results exhibit the capability of model parallelism           
approaches to train models like UNet with biomedical segmentation applications.  
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