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1. Introduction: Background and Key Contribution THE OHIO STATE UNIVERSITY

 Background
o Published in 2015 by Kaiming He, and etc, with 56517 citation so far

o Won 15t place on the tasks of ImageNet detection, ImageNet localization, COCO
detection, and COCO segmentation at the ILSVRC & COCO 2015 competition.

o Achieved 3.57% error on the ImageNet test dataset
o A 28% improvement on the COCO obejct detection dataset

 Key contribution:

o Solved the degradation problem -- with the network depth increasing, accuracy gets
saturated and degraded rapidly.

o The residual networks are easier to optimize and can gain higher accuracy as increased
depth.



1. Introduction: Residual Neural Network THE OHIO STATE UNIVERSITY

* Question: Shouldn’t building better neural networks as easy as
stacking more layers?

* Problem: Vanishing/Exploding

gradients, degradation - "Iy ™
problem. : '., : T
 Old Solution: Normalized T 2
Initialization and normalized the " —
ier. (lad) mer. (1e4)

Intermediate layers

. . _ .
New S_OIUtlon ' ReSId ual has higher training error, and thus test error. Similar phenomena
Leamlng BIOCk on ImageNet 1s presented in Fig. 4.

Figure |. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network

Reference:; https://arxiv.org/abs/1512.03385 4
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1. Introduction: Problem Definition THE OHIO STATE UNIVERSITY

* Vanishing Gradient

 Your gradient/derivative can get
very very very small

« Even exponentially small

« Make the training difficult to
converge, or not converge.

* Exploding Gradients

 Your gradient/derivative can get
very very very larger

« Make the gradient
exploded/diverge...

* Degradation problem:

« With the network depth
Increasing, accuracy get
saturated
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2. Network Design: Residual Learning Block THE OHIO STATE UNIVERSITY

e Better solution: ResNet

* Inspired by VGG nets: stacking
building block of the same

shape
* Residual Block -
* Insert “identity shortcuts”, aka
shortcut connection, or skip weight layer
connection F(x) Jr’E'“
 Allow the information directly ‘ oht e X
pass to deeper layer. Weight Y identity
* Add neither extra parameter nor
computational complexity Fx)+x
* ResNet = a stack of Residual Figure 2. Residual learning: a building block.

Block



2. Network Design: Plain vs ResNet vs VGG THE OHIO STATE UNIVERSITY

ResNet = Plain Network + Short Connection
o Residual network can gain accuracy from considerably increased depth.

Top: a ResNet with 34 parameter layers (3.6 billion FLOPs).
Middle: a plain network with 34 parameter layer (3.6 billion FLOPs).
Bottom: VGG-19 model (19.6 billion FLOPS).
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2. Network Design: Shortcut Connections THE OHIO STATE UNIVERSITY

« |dentity Mapping and Projection W;:
o If input and output has same dimensions (denoted by solid line):
y=Fx{W} +x (1)
o If input and output has different dimensions (denoted by dotted line):
= Option A: Zero padded for extra dimension
= Option B: Perform the projection shortcut to match the dimension (done by 1*1 Conv).

y = Flx, {W:}) + W.x. (2)
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2. Network Design: Comparison of three shortcut strategies THE OHIO STATE UNIVERSITY

° Companson model top-1 erm. top-3 err.
: VGG-16[41] 28.07 9.33
* Type A: zero-padding for GoogLeNet [44] : 9.15
Increasing dimensions, and rest PReLU-met[13] | 24.27 7.38
are identity shortcut(parameter lain.34 78,54 10.02
free) ResNet-34 A 25.03 176
o . . . : . ResNet-34 B 24.52 1.46
T_ype B._ Projection for increasing ReeNet 4 2419 S 10
dimensions only ResNet_s0 7285 671
» Type C: Projection for all shortcut ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

 Conclusion:

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.

« Type C is marginally better as VGG-16 is based on our test. ResNet-50/101/152 are of option [B
extra parameters introduced. but that only uses projections for increasing dimensions.
time complexity and model size

ldentity Shortcut:

vy =Fix {W;}) +x (1)
Projection Shortcut:

y = F(x,{W;}) + Wx. (2)

are doubled
* Type Ais used for rest of paper



3. ImageNet Classification: Bottleneck Building Block THE OHIO STATE UNIVERSITY

 Dataset: ImageNet 2012 classification dataset
o Training dataset: 1.28M train images
o Validation dataset: evaluated on 50K validation images
o Testing dataset: final resulted (topl and top5 error rate) tested on 100K test images.
o Classes: consist of 1000 classes

« Larger network architectures evaluated in ImageNet: “Bottleneck” building block

layer name | output sixe 18-layer | 3d-layer | 50-layer | 10 1-Layer | 152-layer
comv | 112=112 T=T, 64, stride 2
33 max pool, stride 2
r : r : Ix1, 64 11, 64 11,64
comix | 636 || TS b | | T3S [ | | 3xdes [u3 | | 3xdet (w3 33,64 | x3
- - - - [ 11,256 | | 1x1,256 | [ 1x1, 25 []
. 3x3, 128 33, 128 [ 1x1,128 11, 128 [ DL T
oomyv3_x =28 3x3 178 »3 33 7R xd 33 128§ wd =3 128 x4 3x3 128 | =8
T S |11, 512 1x1, 512 1x1,512 ||
33, 256 3], 256 11, 256 11, 256 1x1, 256
comvd_x 1414 I3 256 »2 143 256 & w3 2568 1 own 11 755 713 w3 758 36
B T | i 1024 ] 1x1, 1024 | 11,1004 ||
N N [ 1x1,512 ] [ 11,512 ] [ 1x1,512 ]
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FLOPs LE=1F | 3exlly | 3.E=107 | 7.6 1P | 11,3 107
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Figure 5. A deeper residual function F for ImageNet. Left a
building block (on 5636 feature maps) as in Fig. 3 for ResNet-
34, Right: a “bottleneck”™ building block for ResNet-50/101/152.



4. ImageNet Classification: Performance analysis

* Plain network vs ResNet

THE OHIO STATE UNIVERSITY

plain ResNet
» Obvious degradation problem I8 layers 21.94 27.88
: . .. 34 layers 28.54 25.03
 Plain net has higher training error throughout the b 2 To] }{ﬂ; o T e vl
. able 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
whole trammg procedure Here the ResNets have no extra parameter compared to their plain
e Situation reversed with ResNets counterparts. Fig. 4 shows the training procedures.
BN — e L -
j|:| __________________________
7 SR w0y TN
S . T4-layer ¥
A AL
) PR g g <
PI-EJI"]-E EBesNet-18 ._LJI""- el Fungenf_a A=A,
. ==plain-34 . . . . wm BozNet-34 . . . .1—'-|51r'.'r|
- 10 W0 {1933 40 30 l:::l 10 20 30 40 30
mer. )
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Figure 4. Tramning on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.
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5. Implementation Tricks (read offline) THE OHIO STATE UNIVERSITY

« Augmentation follow the practice [8, 9]
o Resize the images with its shorter side randomly sampled in between [256; 480] for scale augmentation. [9]
o Standard color augmentation. [8]

o A 224x224 crop is randomly sampled from an image or its horizontal flip, with the per-pixel mean
subtracted [8]

 Other techniques follow [5, 6, 7]
o Batch normalization right after each Conv and before activation. [7]
o Initialized the weight as in [5] and train all plain/residual nets from scratch.

o Use SGF with a mini-batch size of 256.

o The learning rate starts from 0.1 and is divided by 10 when the error stagnated, and the models are trained
for up to 60*10™4 iterations.

o Use a weight decay of 0.0001 and a momentum of 0.9.
o No dropout. [6] [7]

« Code is available: https://github.com/KaimingHe/deep-residual-networks
o [TF version] https://qgithub.com/tensorpack/tensorpack/tree/master/examples/ResNet



https://github.com/KaimingHe/deep-residual-networks
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Part2: (ResNeXt) Aggregated Residual
Transformations for Deep Neural Networks

THE OHIO STATE UNIVERSITY




1. Introduction: Background and Key Contribution THE OHIO STATE UNIVERSITY

 Background:
o Won second place in the 2016 ILSVRC image classification task
o Asimpler design: a 101-layer ResNeXt achieved better accuracy than ResNet-200 but has only 50%
complexity.
o The transition from “Feature Engineering” to “Network Engineering”: In contrast to traditional hand-

designed features (e.g. SIFT and HOG), human effort has been shifted to designing better neural network
architecture for learning representation.

e Main Contribution:
o Adopted similar strategy inherited from VGG/ResNets: stack modules of same topology.
o Exploited the split-transform-merge (aka multi-path) strategy in an easy and extensible way.
o Introduces a new dimension for gaining the accuracy: Cardinality

Reference: htips://arxiv.org/abs/1611.05431



https://arxiv.org/abs/1611.05431

1. Introduction: Next Dimension

THE OHIO STATE UNIVERSITY

stacking more layers?

Question: Shouldn’t building better neural networks as easy as

 Old approach: going
deeper(increase #layers)
and wider(increase
bottleneck width)

* New approach: increase
cardinality C

« Cardinality: the size of the
set of transformation (or # of
branches/paths/groups)

2564 In 256-d In
| . ---——-'.?j“---—f-_—;-----.-.%
256 1x1 64 ‘“-.__ 256 1x1_ 4 256, 1x1.4 (55| 256, 1x1,4 *
- I'I - * pathe - I
&4 3x3 o4 | 4 323 4 4 323 4 4 3x3 4
L | k4 k& k4
64 1x1, 256 4 1x1, 256 4 1x1, 256 4 1x1, 256
.-'!'H. .-"-....- ------—_ _"- _—-----
[+ M+
¥ 256-d out x .
[+
~ 2%6-d out

Figure 1. Left: A block of ResNet [14]. Right: A block of
ResNeXt with cardinality = 32, with roughly the same complex
ity. A layer 15 shown as (# in channels, filter size, # out channels).
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2. Related work: Grouped Convolutions THE OHIO STATE UNIVERSITY

« Grouped Convolutions:

o a process of applying multiple kernels/filters per layer on same images

o Allow the training of network across multiple GPUs, and thus results more efficient parallelized training.
o Learned better representations, https://blog.yani.io/filter-group-tutorial/

3 48

<, filters ——| [ 3 i) > >
N N % 3
, P ; 3 N — e \dense
H 48 T 192 192 128 2048 2048
: 128 X oo ] ]
. C; Rall 5 27 LS
R H NN 13
. 224 , s | [ 3) ERE N
(a) Convolution. His. o ’ ‘ Hi2 e " &
\ | ] T 3ot \ 13 3| 1E= dense dense|
 fiters e S - 3| 1000
| 1 \ 192 192 128 Max | ] ||
_ — g i 2048 2048
% = \Mtrig Max 128 Max pooling *
Tifm § of 4 pooling pooling
P = Rallt
I (]
b

The architecture of AlexINet as illustrated in the original paper, showing two separate convolutional filter groups across most of the layers (Alex
(b) Convolution with filter groups. Krizhevsky et al. 2012).

Reference:Deep Roots: Improving CNN Efficiency with Hierarchical Filter Groups,

Reference: ImageNet Classification with Deep Convolutional Neural Networks,
https://arxiv.org/abs/1605.06489

http://www.cs.toronto.edu/~hinton/absps/imagenet.pdf
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3. Method: Two Template rules THE OHIO STATE UNIVERSITY

o TWO Slmple ruIeS' stage | output ResNet-50 ResNeXit-50 (32 4d)
] ] ] convl| 112112 Tx7T, 64, stnde 2 Tx7, 64, stnde 2
1_ If prOdUC|ng Spatlal maps Of 33 max pool, stride 2 | 33 max pool, stride 2
: P 1x1, 64 1:1, 128
the same size, the blocks com2| 56x36 || 00 L3 1] sy s loan || a
share the same hyper- [ 11,25 | | x126) |
para’meters (Wldth and fllter comv3| 28«28 lil Si =4 '&ii'l‘i iz (C=32 || =4
SiZE) [ 11,512 | | 1x1, 512
: : [ 1x1.25 | [ 1x1, 512 I
2. EaCh tlme Wheﬂ the Spatlal comvd| 14=14 3x3, 256 =6 .’ih.’i-;]l (=32 || =6
map is downsampled by a e e N
factor of 2, the width of the convs| TxT 33,512 | 3 [ 353, 1024 0=32 Lx
blocks is multiplied by a SEVELN I
f f 11 global awragi: pool global average pool
aCtOr O 2 1000-d fc, softmax 10:00-d fe, softmax
# params. 25,5 10" 2505 10"
FLOPs 4.1x10° 4.2x10°

Table 1. (Left) ResNet-50. (Right) ResNeXt-50 with a 32:x4d
template (using the reformulation in Fig. 3(c)). Inside the brackets
are the shape of a residual block, and outside the brackets is the
number of stacked blocks on a stage. “C=32" suggests grouped
convolutions [24] with 32 groups. The numbers of parameters and
FLOPs are similar between these two models. 17



3. Method: Aggregated Transformations

THE OHIO STATE UNIVERSITY

. C: carainality, size of the set of
transformations to be

aggregated

« T _i(x): arbitrary transformation
function, e.g. linear
transformation

256, IN

L 3 |

4,3x3,4

> |

256, 1x1, 4 256, 1x1, 4
+ + paths
4 3x3 4 4 3x3 4 vene
> >
4 1x1, 256 4, 1x1, 256
— :)‘________
f -
- 256-d out

(a)

-

4 1x1,256

—

18



3. Method: Equivalent building block of ResNeXt THE OHIO STATE UNIVERSITY

. ¢
* FIg.33): y=x+Y 7). (3)

* Fig.3 b): Similar to Inception-ResNet block, but the same topology shared amount the
multiple paths.

 Fig.3 ¢): applied grouped convolutions

r-r—--——=—=-—-—"--""--""--"--""--""--"="--"=-—"=-—"=---"-"-"=-"=---""=--"-""-"-"-"-""--"=-""-"-"--""-""-"--"-"--""=-""-"-"-""-""-""-"-"-"--"-""-""-"-"-"=-"--"--"=---""-"-"=-"-"=-"-"-"-"-""=-=-"=-=-"=-=-1

| equivalent :
I 256-d in J Z56-din J: 256-d in |
| |
! 256, 1x1 4 256, 1x1,4 [ o] 256,1x1,4 \ 256, 1x1 4 256, 1x1,4 |50 256, 1x1,4 ' 256, 1x1, 128 !
! £3 ¥ paths £3 | ¥ 3 paths x ' I . !
TEE] TR I
! 4 3x3,4 4 3x3 4 4 3x3,4 | 4 Ix3,4 4 3x3,4 4 Ix3 4 | 128, 3:3, 128 |
: + + + | ———-.[ ....... H_t - — I| group = 32 ‘ :
4 1x1,256 4 1x1, 256 4 1x1,256 fconca E“.E.‘..E.‘..r_
| " : ; ’ ] " |
| - - = L o
i — =, 128, 1x1, 256 128, 1x1, 256 / !
[ - I
I R : :: I . I
: 256-d out 256-d out 255-d out :
i @ () © i

L e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e — = o — =]

Figure 3. Equivalent building blocks of ResNeXL (a): Aggregated residual transformations, the same as Fig. 1 right. (b): A block equivalent
to (a), implemented as early concatenation. (c): A block equivalent to (a,b), implemented as grouped convolutions [24]. Notations in bold
text highlight the reformulation changes. A layer is denoted as  input channels, filter size, # output channels).
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3. Method: Inception-ResNet vs ResNeXt THE OHIO STATE UNIVERSITY

* Inception-ResNet

« Many hyper-parameters need to be tailored for each individual
transformation

« Hard to adapt to a new dataset/task

e ResNeXt:

» Use the same topology among all paths
» Proved a better accuracy over all Inception model

| e
K 256, 1x1,4 | | 256,1x1,4 [ o0l 256,1x1,4 |
|
1x1 Conv * 2 paths =
(256 Linear) 4 Ix3 4 4, 3x3, 4 " 4, 3x3, 4 |
3x3 Conv __——T ------- I - |
(32) concatenate |
1x1 Conv I — -
52) 3x3 Conv 3x3 Conv 128 1x1 256
(32) (32) : '
r 1 * .
1x1 Cony 1x1 Conv @.— —
(2) (32) 256-d out
(b)
Relu activation
, _ Figure: ResNeXt building block with 32
Figure: Inception-ResNet-v2 module cardinality 50

Reference: https://arxiv.org/pdf/1602.07261.pdf
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4, ImageNeth: Model Capacity vs Width THE OHIO STATE UNIVERSITY

 For evaluating different cardinalities C, the complexity(# params) is preserved by adjusting

the width of bottleneck. Equivalent
o Calculate the #params for original network ,ﬂ%
= ResNet-50 (1x64d) = 256*(/+3*3*(/*(/+6/*256~=70k params el FI R R
o Calculate the #params for bottleneck width d: Table 2 Relations between cardinality and width (for the templat

_ _ of conv2), with roughly preserved complexity on a residual block.
" ReSNeXt'SO (32X4d) - C*(256*d+3*3*d*d+d*256)~_70k para S The number of parameters is ~70k for the lemplate of conv2. The

number of FLOPs is ~0.22 billion (# params> 56356 for conv 2).

L — _— = — setling top-1 error (%)
Y " v T ResNet-50 1 = odd 239
256, 1x1, 64 256, 1x1, 4 256, 1x1,4 | 49| 256,1x1,4 TS RET S I0d 0
= ' = * paths = \ ResNeX1-50 4 % 24d 22.6
CLEEC) I. @3a(9) || @3a@) | - Q=10 | ResNeXt-50 8 x 14d 223
3 | - = = ! ResNeX1-30 32 % 4d 222
&4, 1x1, 256 4 1x1,25 | | 4 1x1,256 4 1x1, 756 / " ResNet-101 I = 64d 220
3 ,ﬂ” ?_x Y ResNeXt-101 2 x 40d 217
e i L ResNeXt-101 4 % 24d 21.4
‘“— £ o ResNeXt-101 8 x 14d 21.3
(+ - ResNeXt-101 32 x 4d 21.2

bﬂ Table 3. Ablation experiments on ImageMNet-1K. (Top): ResNel-

Figum I. Left: A block of ResNet [14]. Hiﬂhti A block of 50 with preserved complexity (~-4.1 billion FLOPs); (Bottom):
ResNeXt with cardinality = 32, with roughly the same complex ResNet-101 with preserved complexity (~7.8 billion FLOPs). The
. . . o error rate is evaluated on the single crop of 2242224 pixels.

ity. A layer 15 shown as (# in channels, filter size, # out channels).



4. ImageNet-1K: Increasing Cardinality Vs
Deeper/Wider

THE OHIO STATE UNIVERSITY

* Original approach:
o Going Deeper: 0.3% improvement
o Going Wider: 0.7% improvement

* New approach:
o Increasing Cardinality(C): 1.3% improvement

* Conclusion: Increasing cardinality C shows much better results than going deeper or wider

o setting | top-1emr (%) | top-3 e (%)
sl /J 1| N ; ] Him}i'ff T P g};mggj”_ _ I'x complexity references:
JON VIV B e =St T Pl 101 (D x Baseline - ResNet-101 | 1x6d4d | 22,0 6.0
E ResNeXi-101 32 x 4d | 21.2 3.6 \ Increase
;m- ' _ . 2% complexity models follow: \ Cardinality
b Bl GoINg DeePeANTResNet-200 [15] | 1 64d | 217 5. /
Bl S Bl B Going Wider “ResNet-101, wider | 1 x 100d 21.3 5.7
S Naagaeat ResNeXi-101 2 x 6dd 20.7 55 KW

- = N ResNeXt-101 64 4d | 204 5.3

20 x

) . i Table 4. Comparisons on ImageNet-1K when the number of

oo mow e e e W o ® ¥ =2 4 & @ B & ® FLOPs 15 increased to 2 of ResNet-101's. The error rate is evalu-

Figure 5. Training curves on ImageNet-1K. (Left): ResNet/ResNeXt-50 with preserved complexity (~-4.1 billion FLOPs, ~25 million

parameters); (Right): ResNet/ResNeXi-101 with preserved complexity (~-7.8 billion FLOPs, ~~44 million parameters).

ated on the single crop of 224 x 224 pixels. The highlighted factors
are the factors that increase complexity.



5. Implementation Details (read offline) THE OHIO STATE UNIVERSITY

o A 224x224 crop is randomly cropped from a resized image using the scale and aspect ratio
augmentation [13] [10]

 The shortcuts connection for different input-output dimension are project, type B in [12]

« Downsampling of conv3, 4, and 5 is done by stride-2 convolutions in the 3x3 layer of the first block in
each stage, as suggested in [10]

« Use SGD with a mini-batch size of 256 on 8 GPUs (32 samples per GPUs for Data parallelism)
» The weight decay is 0.0001 and the momentum is 0.9

« Start from a learning rate of 0.1, and divide it by 10 for three times using the schedule in [10].
 Adopt the weight initialization of [12]

« evaluate the error on the single 224x224 center crop from an image whose shorter side is 256.

» Choose Fig.3 c) ResNeXt block, grouped convolutions.

 Batch normalization(BN) is performed right after the convolutions, and ReLU is performed right after
BN, except the output of the block [12]

« Code Is available of https://github.com/facebookresearch/ResNeXt
o [PyTorch version]: https://pytorch.org/hub/pytorch_vision_resnext/



https://github.com/facebookresearch/ResNeXt
https://pytorch.org/hub/pytorch_vision_resnext/

Conclusion THE OHIO STATE UNIVERSITY

* ResNet
o Vanishing gradient, Exploding gradient, and degradation problem
o Residual building block, Bottleneck Building block
o Shortcut connection, Projection shortcut
o Deep residual network are easy to optimize and can gain a better accuracy as the increased of network depth.

* ResNeXt
o multi-branch/path (split-transform-merge in Inception net) strategy
o Two template rule, Aggregated transformation
o Trade-off between Cardinality(C) and Bottleneck width(d)
o Increasing cardinality is more effective than going deeper/wider.



THE OHIO STATE UNIVERSITY

Thank Youl

Any Question?
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