CSE5194: ResNet and ResNeXt

The Ohio State University Zhengqi Dong E-mail: dong.760@osu.edu Date: 09/20/2019

Part1: (ResNet) Deep Residual Learning for Image Recognition

• Published in 2015 by Kaiming He, and etc, with 56517 citation so far

• Won 1st place on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation at the ILSVRC & COCO 2015 competition.
 • A chieved 3.57% error on the ImageNet test dataset
 • A 28% improvement on the COCO obejct detection dataset

THE OHIO STATE UNIVERSITY

• Key contribution:

• Solved the **degradation problem** -- with the network depth increasing, accuracy gets saturated and degraded rapidly.

• The residual networks are easier to optimize and can gain higher accuracy as increased depth.

 Question: Shouldn't building better neural networks as easy as stacking more layers?

- Problem: Vanishing/Exploding gradients, degradation problem.
- Old Solution: Normalized initialization and normalized the intermediate layers
- New Solution: Residual Learning Block

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

- Vanishing Gradient
 - Your gradient/derivative can get very very very small
 - Even exponentially small
 - Make the training difficult to converge, or not converge.
- Exploding Gradients
 - Your gradient/derivative can get very very very larger
 - Make the gradient exploded/diverge...
- Degradation problem:
 - With the network depth increasing, accuracy get saturated

THE OHIO STATE UNIVERSITY

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

- Better solution: ResNet
- Inspired by VGG nets: stacking building block of the same shape
- Residual Block
 - Insert "identity shortcuts", aka shortcut connection, or skip connection
 - Allow the information directly pass to deeper layer.
 - Add neither extra parameter nor computational complexity
- ResNet = a stack of Residual Block

Figure 2. Residual learning: a building block.

2. Network Design: Plain vs ResNet vs VGG

• ResNet = Plain Network + Short Connection

 \circ Residual network can gain accuracy from considerably increased depth.

- Top: a ResNet with 34 parameter layers (3.6 billion FLOPs).
- Middle: a plain network with 34 parameter layer (3.6 billion FLOPs).
- Bottom: VGG-19 model (19.6 billion FLOPs).

2. Network Design: Shortcut Connections

- Identity Mapping and Projection *W_s*:
 - If input and output has same dimensions (denoted by solid line):

 $\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$

 \circ If input and output has different dimensions (denoted by dotted line):

(1)

- Option A: Zero padded for extra dimension
- Option B: Perform the projection shortcut to match the dimension (done by 1*1 Conv).

Comparison

- Type A: zero-padding for increasing dimensions, and rest are identity shortcut(parameter free)
- Type B: Projection for increasing dimensions only
- Type C: Projection for all shortcut
- Conclusion:
 - Type C is marginally better as extra parameters introduced, but time complexity and model size are doubled
 - Type A is used for rest of paper

model	top-1 err.	top-5 err.
VGG-16 [41]	28.07	9.33
GoogLeNet [44]	-	9.15
PReLU-net [13]	24.27	7.38
plain-34	28.54	10.02
ResNet-34 A	25.03	7.76
ResNet-34 B	24.52	7.46
ResNet-34 C	24.19	7.40
ResNet-50	22.85	6.71
ResNet-101	21.75	6.05
ResNet-152	21.43	5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation. VGG-16 is based on our test. ResNet-50/101/152 are of option B that only uses projections for increasing dimensions.

Identity Shortcut:

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}. \tag{1}$$

Projection Shortcut:

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}. \tag{2}$$

3. ImageNet Classification: Bottleneck Building Block 🔲 ТНЕ ОНЮ STATE UNIVERSITY

- Dataset: ImageNet 2012 classification dataset
 - Training dataset: 1.28M train images
 - Validation dataset: evaluated on 50K validation images
 - Testing dataset: final resulted (top1 and top5 error rate) tested on 100K test images.
 - \circ Classes: consist of 1000 classes
- Larger network architectures evaluated in ImageNet: <u>"Bottleneck" building block</u>

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
				3×3 max pool, stric	ie 2	
conv2_x	56×56	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 3$	1×1, 64 3×3, 64 ×3	1×1, 64 3×3, 64 ×3	1×1, 64 3×3, 64 ×3
		[3×3, 64]	[3×3, 64]	1×1,256	1×1,256	1×1,256
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times4$	1×1, 128 3×3, 128 ×4 1×1, 512	1×1, 128 3×3, 128 ×4 1×1, 512	1×1, 128 3×3, 128 ×8 1×1, 512
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times6$	1×1, 256 3×3, 256 ×6 1×1, 1024	1×1, 256 3×3, 256 ×23 1×1, 1024	1×1, 256 3×3, 256 1×1, 1024
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	1×1,512 3×3,512 ×3 1×1,2048	1×1, 512 3×3, 512 1×1, 2048	1×1, 512 3×3, 512 1×1, 2048
	1×1	average pool, 1000-d fc, softmax				
FLO	DPs	1.8×10^{9}	3.6×10 ⁹	3.8×10 ⁹	7.6×10 ⁹	11.3×10 ⁹

Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

4. ImageNet Classification: Performance analysis

- Plain network vs ResNet
 - Obvious degradation problem
 - Plain net has higher training error throughout the whole training procedure
 - Situation reversed with ResNets

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation. Here the ResNets have no extra parameter compared to their plain counterparts. Fig. 4 shows the training procedures.

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

5. Implementation Tricks (read offline)

- Augmentation follow the practice [8, 9]
 - Resize the images with its shorter side randomly sampled in between [256; 480] for scale augmentation. [9]

- Standard color augmentation. [8]
- A 224x224 crop is randomly sampled from an image or its horizontal flip, with the per-pixel mean subtracted [8]
- Other techniques follow [5, 6, 7]
 - Batch normalization right after each Conv and before activation. [7]
 - \circ Initialized the weight as in [5] and train all plain/residual nets from scratch.
 - \circ Use SGF with a mini-batch size of 256.
 - \circ The learning rate starts from 0.1 and is divided by 10 when the error stagnated, and the models are trained for up to 60*10^4 iterations.
 - \circ Use a weight decay of 0.0001 and a momentum of 0.9.
 - 0 <u>No dropout</u>. [6] [7]
- Code is available: <u>https://github.com/KaimingHe/deep-residual-networks</u>

 [TF version] <u>https://github.com/tensorpack/tensorpack/tree/master/examples/ResNet</u>

Part2: (ResNeXt) Aggregated Residual Transformations for Deep Neural Networks

• Background:

- Won second place in the 2016 ILSVRC image classification task
- A <u>simpler design</u>: a 101-layer ResNeXt achieved better accuracy than ResNet-200 but has only 50% complexity.
- The transition from "Feature Engineering" to <u>"Network Engineering"</u>: In contrast to traditional handdesigned features (e.g. SIFT and HOG), human effort has been shifted to designing better neural network architecture for learning representation.

• Main Contribution:

- Adopted similar strategy inherited from VGG/ResNets: stack modules of same topology.
- Exploited the <u>split-transform-merge (aka multi-path) strategy</u> in an easy and extensible way.
- Introduces a new dimension for gaining the accuracy: <u>Cardinality</u>

Question: Shouldn't building better neural networks as easy as stacking more layers?

- Old approach: going deeper(increase #layers) and wider(increase bottleneck width)
- New approach: increase cardinality C
- Cardinality: the size of the set of transformation (or # of branches/paths/groups)

Figure 1. Left: A block of ResNet [14]. Right: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels).

• Grouped Convolutions:

- o a process of applying multiple kernels/filters per layer on same images
- Allow the training of network across multiple GPUs, and thus results more efficient parallelized training.
- o Learned better representations, <u>https://blog.yani.io/filter-group-tutorial/</u>

(b) Convolution with filter groups.

The architecture of AlexNet as illustrated in the original paper, showing two separate convolutional filter groups across most of the layers (<u>Alex</u> <u>Krizhevsky et al. 2012</u>).

Reference:Deep Roots: Improving CNN Efficiency with Hierarchical Filter Groups, https://arxiv.org/abs/1605.06489 Reference: ImageNet Classification with Deep Convolutional Neural Networks, http://www.cs.toronto.edu/~hinton/absps/imagenet.pdf

3. Method: Two Template rules

- Two simple rules:
 - If producing spatial maps of the same size, the blocks share the same hyperparameters (width and filter size)
 - 2. Each time when the spatial map is downsampled by a factor of 2, the width of the blocks is multiplied by a factor of 2.

stage	output	ResNet-50	ResNeXt-50 (32×4d)		
conv1	112×112	7×7, 64, stride 2	7×7, 64, stride 2		
		3×3 max pool, stride 2	3×3 max pool, stride 2		
conv2	56×56	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128, C=32 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3	28×28	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256, C=32 \\ 1 \times 1, 512 \end{bmatrix} \times 4$		
conv4	14×14	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512, C=32 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$		
conv5	7×7	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 1024 \\ 3 \times 3, 1024, C=32 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		
	1×1	global average pool 1000-d fc, softmax	global average pool 1000-d fc, softmax		
# pa	arams.	25.5×10^{6}	25.0×10^{6}		
FLOPs 4.1		4.1×10^{9}	4.2×10^{9}		

THE OHIO STATE UNIVERSITY

Table 1. (Left) ResNet-50. (Right) ResNeXt-50 with a $32 \times 4d$ template (using the reformulation in Fig. 3(c)). Inside the brackets are the shape of a residual block, and outside the brackets is the number of stacked blocks on a stage. "C=32" suggests grouped convolutions [24] with 32 groups. The numbers of parameters and FLOPs are similar between these two models.

3. Method: Equivalent building block of ResNeXt

(3)

- Fig.3 a): $\mathbf{y} = \mathbf{x} + \sum_{i=1}^{C} \mathcal{T}_i(\mathbf{x}),$
- Fig.3 b): Similar to Inception-ResNet block, but the same topology shared amount the multiple paths.
- Fig.3 c): applied grouped convolutions

Figure 3. Equivalent building blocks of ResNeXt. (a): Aggregated residual transformations, the same as Fig. 1 right. (b): A block equivalent to (a), implemented as early concatenation. (c): A block equivalent to (a,b), implemented as grouped convolutions [24]. Notations in **bold** text highlight the reformulation changes. A layer is denoted as (# input channels, filter size, # output channels).

- Inception-ResNet
 - Many hyper-parameters need to be tailored for each individual transformation
 - Hard to adapt to a new dataset/task
- ResNeXt:
 - Use the same topology among all paths
 - Proved a better accuracy over all Inception model

256-d in 256, 1x1, 4 256, 1x1, 4 256, 1x1, 4 total 32 paths 4, 3x3, 4 4, 3x3, 4 4, 3x3, 4 . . . concatenate 128, 1x1, 256 256-d out **(b)**

Figure: ResNeXt building block with 32 cardinality Reference: https://arxiv.org/pdf/1602.07261.pdf

Figure: Inception-ResNet-v2 module

4. ImageNet1K: Model Capacity vs Width

- For evaluating different cardinalities C, the complexity(# params) is preserved by adjusting the width of bottleneck.
 - \circ Calculate the #params for original network
 - **ResNet-50** (1x64d) = $256*64+3*3*64*64+64*256 \approx = 70k$ params
 - \circ Calculate the #params for bottleneck width d:
 - **ResNeXt-50** (32x4d) = $C^{(256*d+3*3*d*d+d*256)} \sim = 70k$ params

Figure 1. Left: A block of ResNet [14]. Right: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels).

	_ _	Eq Co	uival mple	lent exity	
cardinality C	1	2	4	8	32
width of bottleneck d	64	40	24	14	4
width of group conv.	64	80	96	112	128

THE OHIO STATE UNIVERSITY

Table 2. Relations between cardinality and width (for the template of conv2), with roughly preserved complexity on a residual block. The number of parameters is \sim 70k for the template of conv2. The number of FLOPs is \sim 0.22 billion (# params \times 56 \times 56 for conv2).

\backslash		setting	top-1 error (%)
	 ResNet-50 	$1 \times 64d$	23.9
	ResNeXt-50	$2 \times 40d$	23.0
	ResNeXt-50	$4 \times 24d$	22.6
	ResNeXt-50	$8 \times 14d$	22.3
	 ResNeXt-50 	$32 \times 4d$	22.2
	ResNet-101	$1 \times 64d$	22.0
	ResNeXt-101	$2 \times 40d$	21.7
	ResNeXt-101	$4 \times 24d$	21.4
	ResNeXt-101	$8 \times 14d$	21.3
	ResNeXt-101	$32 \times 4d$	21.2

Table 3. Ablation experiments on ImageNet-1K. (Top): ResNet-50 with preserved complexity (\sim 4.1 billion FLOPs); (Bottom): ResNet-101 with preserved complexity (\sim 7.8 billion FLOPs). The error rate is evaluated on the single crop of 224×224 pixels.

4. ImageNet-1K: Increasing Cardinality Vs Deeper/Wider

- Original approach:
 - o Going Deeper: 0.3% improvemento Going Wider: 0.7% improvement
- New approach:
 - o Increasing Cardinality(C): 1.3% improvement
- Conclusion: Increasing cardinality C shows much better results than going deeper or wider

Figure 5. Training curves on ImageNet-1K. (Left): ResNet/ResNeXt-50 with preserved complexity (~4.1 billion FLOPs, ~25 million parameters); (Right): ResNet/ResNeXt-101 with preserved complexity (~7.8 billion FLOPs, ~44 million parameters).

Table 4. Comparisons on ImageNet-1K when the number of FLOPs is increased to $2 \times$ of ResNet-101's. The error rate is evaluated on the single crop of 224×224 pixels. The highlighted factors are the factors that increase complexity.

5. Implementation Details (read offline)

- A 224x224 crop is randomly cropped from a resized image using the scale and aspect ratio augmentation [13] [10]
- The shortcuts connection for different input-output dimension are project, type B in [12]
- Downsampling of conv3, 4, and 5 is done by stride-2 convolutions in the 3x3 layer of the first block in each stage, as suggested in [10]

- Use SGD with a mini-batch size of 256 on 8 GPUs (32 samples per GPUs for Data parallelism)
- The weight decay is 0.0001 and the momentum is 0.9
- Start from a learning rate of 0.1, and divide it by 10 for three times using the schedule in [10].
- Adopt the weight initialization of [12]
- evaluate the error on the single 224x224 center crop from an image whose shorter side is 256.
- Choose Fig.3 c) ResNeXt block, grouped convolutions.
- Batch normalization(BN) is performed right after the convolutions, and ReLU is performed right after BN, except the output of the block [12]
- Code is available of <u>https://github.com/facebookresearch/ResNeXt</u>

 [PyTorch version]: <u>https://pytorch.org/hub/pytorch_vision_resnext/</u>

Conclusion

• ResNet

- Vanishing gradient, Exploding gradient, and degradation problem
- Residual building block, Bottleneck Building block
- Shortcut connection, Projection shortcut
- Deep residual network are easy to optimize and can gain a better accuracy as the increased of network depth.

• ResNeXt

- \circ multi-branch/path (split-transform-merge in Inception net) strategy
- Two template rule, Aggregated transformation
- \circ Trade-off between Cardinality(C) and Bottleneck width(d)
- \circ Increasing cardinality is more effective than going deeper/wider.

Reference

- [1] Deep Residual Learning for Image Recognition, <u>https://arxiv.org/abs/1512.03385</u>
- [2] Aggregated Residual Transformations for Deep Neural Networks, https://arxiv.org/abs/1611.05431
- [3] Deeplearning.ai, <u>https://www.youtube.com/watch?v=ZILIbUvp5lk&list=PLpFsSf5Dm-pd5d3rjNtIXUHT-v7bdaEIe&index=113</u>
- [4] Cellstart, VANISHING / EXPLODING GRADIENT PROBLEM IN DEEP NEURAL NETWORKS, https://www.cellstrat.com/2018/05/17/vanishing-exploding-gradient-problem-in-deep-neural-networks/
- [5] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015.
- [6] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural networks by preventing coadaptation of feature detectors. arXiv:1207.0580, 2012.
- [7] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
- [8] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
- [9] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
- [10] S. Gross and M. Wilber. Training and investigating Residual Nets. https://github.com/facebook/fb.resnet.torch, 2016.
- [11] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015.
- [12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
- [13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.