
CSE5194: ResNet and ResNeXt
The Ohio State University

Zhengqi Dong

E-mail: dong.760@osu.edu

Date: 09/20/2019

Part1: (ResNet) Deep Residual Learning
for Image Recognition

• Background

oPublished in 2015 by Kaiming He, and etc, with 56517 citation so far

oWon 1st place on the tasks of ImageNet detection, ImageNet localization, COCO

detection, and COCO segmentation at the ILSVRC & COCO 2015 competition.

oAchieved 3.57% error on the ImageNet test dataset

oA 28% improvement on the COCO obejct detection dataset

• Key contribution:

oSolved the degradation problem -- with the network depth increasing, accuracy gets

saturated and degraded rapidly.

oThe residual networks are easier to optimize and can gain higher accuracy as increased

depth.

1. Introduction: Background and Key Contribution

1. Introduction: Residual Neural Network

4

• Problem: Vanishing/Exploding
gradients, degradation
problem.

• Old Solution: Normalized
initialization and normalized the
intermediate layers

• New Solution: Residual
Learning Block

• Question: Shouldn’t building better neural networks as easy as
stacking more layers?

Reference: https://arxiv.org/abs/1512.03385

https://arxiv.org/abs/1512.03385

1. Introduction: Problem Definition

5

• Vanishing Gradient
• Your gradient/derivative can get

very very very small

• Even exponentially small

• Make the training difficult to
converge, or not converge.

• Exploding Gradients
• Your gradient/derivative can get

very very very larger

• Make the gradient
exploded/diverge…

• Degradation problem:
• With the network depth

increasing, accuracy get
saturated

2. Network Design: Residual Learning Block

6

• Better solution: ResNet

• Inspired by VGG nets: stacking
building block of the same
shape

• Residual Block
• Insert “identity shortcuts”, aka

shortcut connection, or skip
connection

• Allow the information directly
pass to deeper layer.

• Add neither extra parameter nor
computational complexity

• ResNet = a stack of Residual
Block

• ResNet = Plain Network + Short Connection

o Residual network can gain accuracy from considerably increased depth.

• Top: a ResNet with 34 parameter layers (3.6 billion FLOPs).

• Middle: a plain network with 34 parameter layer (3.6 billion FLOPs).

• Bottom: VGG-19 model (19.6 billion FLOPs).

2. Network Design: Plain vs ResNet vs VGG

2. Network Design: Shortcut Connections

• Identity Mapping and Projection 𝑊𝑠:

o If input and output has same dimensions (denoted by solid line):

o If input and output has different dimensions (denoted by dotted line):

▪ Option A: Zero padded for extra dimension

▪ Option B: Perform the projection shortcut to match the dimension (done by 1*1 Conv).

2. Network Design: Comparison of three shortcut strategies

9

• Comparison
• Type A: zero-padding for

increasing dimensions, and rest
are identity shortcut(parameter
free)

• Type B: Projection for increasing
dimensions only

• Type C: Projection for all shortcut

• Conclusion:
• Type C is marginally better as

extra parameters introduced, but
time complexity and model size
are doubled

• Type A is used for rest of paper
Projection Shortcut:

Identity Shortcut:

• Dataset: ImageNet 2012 classification dataset

o Training dataset: 1.28M train images

o Validation dataset: evaluated on 50K validation images

o Testing dataset: final resulted (top1 and top5 error rate) tested on 100K test images.

o Classes: consist of 1000 classes

• Larger network architectures evaluated in ImageNet: “Bottleneck” building block

3. ImageNet Classification: Bottleneck Building Block

4. ImageNet Classification: Performance analysis

11

• Plain network vs ResNet
• Obvious degradation problem

• Plain net has higher training error throughout the
whole training procedure

• Situation reversed with ResNets

• Augmentation follow the practice [8, 9]

o Resize the images with its shorter side randomly sampled in between [256; 480] for scale augmentation. [9]

o Standard color augmentation. [8]

o A 224x224 crop is randomly sampled from an image or its horizontal flip, with the per-pixel mean
subtracted [8]

• Other techniques follow [5, 6, 7]

o Batch normalization right after each Conv and before activation. [7]

o Initialized the weight as in [5] and train all plain/residual nets from scratch.

o Use SGF with a mini-batch size of 256.

o The learning rate starts from 0.1 and is divided by 10 when the error stagnated, and the models are trained
for up to 60*10^4 iterations.

o Use a weight decay of 0.0001 and a momentum of 0.9.

o No dropout. [6] [7]

• Code is available: https://github.com/KaimingHe/deep-residual-networks

o [TF version] https://github.com/tensorpack/tensorpack/tree/master/examples/ResNet

5. Implementation Tricks (read offline)

https://github.com/KaimingHe/deep-residual-networks
https://github.com/tensorpack/tensorpack/tree/master/examples/ResNet

Part2: (ResNeXt) Aggregated Residual
Transformations for Deep Neural Networks

• Background:

o Won second place in the 2016 ILSVRC image classification task

o A simpler design: a 101-layer ResNeXt achieved better accuracy than ResNet-200 but has only 50%

complexity.

o The transition from “Feature Engineering” to “Network Engineering”: In contrast to traditional hand-

designed features (e.g. SIFT and HOG), human effort has been shifted to designing better neural network

architecture for learning representation.

• Main Contribution:

o Adopted similar strategy inherited from VGG/ResNets: stack modules of same topology.

o Exploited the split-transform-merge (aka multi-path) strategy in an easy and extensible way.

o Introduces a new dimension for gaining the accuracy: Cardinality

1. Introduction: Background and Key Contribution

Reference: https://arxiv.org/abs/1611.05431

https://arxiv.org/abs/1611.05431

1. Introduction: Next Dimension

15

Question: Shouldn’t building better neural networks as easy as
stacking more layers?

• Old approach: going
deeper(increase #layers)
and wider(increase
bottleneck width)

• New approach: increase
cardinality C

• Cardinality: the size of the
set of transformation (or # of
branches/paths/groups)

• Grouped Convolutions:

o a process of applying multiple kernels/filters per layer on same images

o Allow the training of network across multiple GPUs, and thus results more efficient parallelized training.

o Learned better representations, https://blog.yani.io/filter-group-tutorial/

2. Related work: Grouped Convolutions

16

Reference:Deep Roots: Improving CNN Efficiency with Hierarchical Filter Groups,

https://arxiv.org/abs/1605.06489

Reference: ImageNet Classification with Deep Convolutional Neural Networks,

http://www.cs.toronto.edu/~hinton/absps/imagenet.pdf

https://blog.yani.io/filter-group-tutorial/
https://arxiv.org/abs/1605.06489
http://www.cs.toronto.edu/~hinton/absps/imagenet.pdf

3. Method: Two Template rules

17

• Two simple rules:
1. If producing spatial maps of

the same size, the blocks
share the same hyper-
parameters (width and filter
size)

2. Each time when the spatial
map is downsampled by a
factor of 2, the width of the
blocks is multiplied by a
factor of 2.

3. Method: Aggregated Transformations

18

• Simple Neurons:

• Aggregated Transformation:

• C: cardinality, size of the set of
transformations to be
aggregated

• T_i(x): arbitrary transformation
function, e.g. linear
transformation

• Fig.3 a):

• Fig.3 b): Similar to Inception-ResNet block, but the same topology shared amount the

multiple paths.

• Fig.3 c): applied grouped convolutions

3. Method: Equivalent building block of ResNeXt

19

3. Method: Inception-ResNet vs ResNeXt

20
Reference: https://arxiv.org/pdf/1602.07261.pdf

• Inception-ResNet
• Many hyper-parameters need to be tailored for each individual

transformation
• Hard to adapt to a new dataset/task

• ResNeXt:
• Use the same topology among all paths
• Proved a better accuracy over all Inception model

Figure: ResNeXt building block with 32

cardinality Figure: Inception-ResNet-v2 module

https://arxiv.org/pdf/1602.07261.pdf

• For evaluating different cardinalities C, the complexity(# params) is preserved by adjusting

the width of bottleneck.

o Calculate the #params for original network

▪ ResNet-50 (1x64d) = 256*64+3*3*64*64+64*256~=70k params

o Calculate the #params for bottleneck width d:

▪ ResNeXt-50 (32x4d) = C*(256*d+3*3*d*d+d*256)~=70k params

4. ImageNet1K: Model Capacity vs Width

Equivalent

Complexity

• Original approach:

o Going Deeper: 0.3% improvement

o Going Wider: 0.7% improvement

• New approach:

o Increasing Cardinality(C): 1.3% improvement

• Conclusion: Increasing cardinality C shows much better results than going deeper or wider

4. ImageNet-1K: Increasing Cardinality Vs
Deeper/Wider

Baseline

Going Deeper

Going Wider

Increase

Cardinality

• A 224x224 crop is randomly cropped from a resized image using the scale and aspect ratio
augmentation [13] [10]

• The shortcuts connection for different input-output dimension are project, type B in [12]

• Downsampling of conv3, 4, and 5 is done by stride-2 convolutions in the 3x3 layer of the first block in
each stage, as suggested in [10]

• Use SGD with a mini-batch size of 256 on 8 GPUs (32 samples per GPUs for Data parallelism)

• The weight decay is 0.0001 and the momentum is 0.9

• Start from a learning rate of 0.1, and divide it by 10 for three times using the schedule in [10].

• Adopt the weight initialization of [12]

• evaluate the error on the single 224x224 center crop from an image whose shorter side is 256.

• Choose Fig.3 c) ResNeXt block, grouped convolutions.

• Batch normalization(BN) is performed right after the convolutions, and ReLU is performed right after
BN, except the output of the block [12]

• Code is available of https://github.com/facebookresearch/ResNeXt
o [PyTorch version]: https://pytorch.org/hub/pytorch_vision_resnext/

5. Implementation Details (read offline)

https://github.com/facebookresearch/ResNeXt
https://pytorch.org/hub/pytorch_vision_resnext/

• ResNet

o Vanishing gradient, Exploding gradient, and degradation problem

o Residual building block, Bottleneck Building block

o Shortcut connection, Projection shortcut

o Deep residual network are easy to optimize and can gain a better accuracy as the increased of network depth.

• ResNeXt

o multi-branch/path (split-transform-merge in Inception net) strategy

o Two template rule, Aggregated transformation

o Trade-off between Cardinality(C) and Bottleneck width(d)

o Increasing cardinality is more effective than going deeper/wider.

Conclusion

Thank you!

Thank You!

Any Question?

25

[1] Deep Residual Learning for Image Recognition, https://arxiv.org/abs/1512.03385

[2] Aggregated Residual Transformations for Deep Neural Networks, https://arxiv.org/abs/1611.05431

[3] Deeplearning.ai, https://www.youtube.com/watch?v=ZILIbUvp5lk&list=PLpFsSf5Dm-pd5d3rjNtIXUHT-v7bdaEIe&index=113

[4] Cellstart, VANISHING / EXPLODING GRADIENT PROBLEM IN DEEP NEURAL NETWORKS,
https://www.cellstrat.com/2018/05/17/vanishing-exploding-gradient-problem-in-deep-neural-networks/

[5] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015.

[6] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural networks by preventing coadaptation of feature
detectors. arXiv:1207.0580, 2012.

[7] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.

[8] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.

[9] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.

[10] S. Gross and M. Wilber. Training and investigating Residual Nets. https://github.com/facebook/fb.resnet.torch, 2016.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
CVPR, 2015.

Reference

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1611.05431
https://www.youtube.com/watch?v=ZILIbUvp5lk&list=PLpFsSf5Dm-pd5d3rjNtIXUHT-v7bdaEIe&index=113
https://www.cellstrat.com/2018/05/17/vanishing-exploding-gradient-problem-in-deep-neural-networks/

