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Abstract 

Predicting the next foot placement of human walking or 

running activity is an important task for developing a 

comfortable and intelligent walking aid robot. The 

previous study mainly focuses on designing the walking 

aid robot with better mechanical support or adding some 

traditional machining learning approaches that require 

extensive manual feature selection to generate the foot 

placement probability grid map. Those approaches can be 

difficult to generalize to various complicated scenarios in 

human daily life activities. Therefore, an attention 

mechanism with several state-of-the-art neural network 

techniques was investigated for improving the 

generalization ability and accuracy of the foot placement 

prediction task. In this study, we implemented and 

compared four different neural network architectures for 

foot placement prediction, and the experimental result are 

obtained and showed a clear improvement in the 

effectiveness of adding an attention mechanism to the 

novel network architecture that only consists of Long 

Short-Term Memory (LSTM) layer or Bidirectional 

LSTM (Bi-LSTM) layer. An experimental comparison 

found that the MAE, MSE, and RMSE prediction error has 

reduced by about 8.64%, 16.97%, and 8.88% after adding 

the attention layer meanwhile this performance does not 

correlate with the model size. Besides, our result also 

shows that simply replacing the LSTM with the Bi-LSTM 

layer would not improve the performance and can be 

harmful instead.  

1.  Introduction 

Walking and running are important gaits of terrestrial 

locomotion that human exercises every day, and this 

activity is majorly supported by our lower-limb body. 

However, many elderly people and patients who were 

neurologically injured by stroke, spinal cord injury, 

weakness of skeletal muscles, and Parkinson's disease 

have difficulties in coordinating their body and walking 

normally  [1], [2]. Furthermore, they were subjected to a 

high risk of falling in many common daily living activities 

during locomotion, including stepping over obstacles, 

turning, and stair climbing [3], [4]. Recently, many 

intelligent walking-aid robots (e.g., prostheses, orthoses, 

exoskeletons devices, extra robots) had been designed for 

helping elderly and dysfunctional walking patients with 

physical movement assistance and rehabilitation. For 

example, the Walking-aid Cane robot [5] uses a center of 

pressure (COP) method and Dubois' fuzzy possibility on 

the cane robot to predict and prevent the potential falling 

event, and a Bayesian inference-based foot placement 

prediction model is proposed to model the foot-placement 

probability map [6].  

In this project, for pushing the limit of building a more 

intelligent exoskeleton device, we implemented and 

compared four different neural network architectures for 

verifying the validity of the deep learning approach and 

measuring the effectiveness of adding an attention 

mechanism to the LSTM network architecture on food 

placement prediction tasks. Moreover, a simple data 

collection plan is created and conducted for preparing the 

training data for this study. 

The rest of the paper is organized as follows. In Section 

2, we introduced several gait phases that a completed gait 

cycle was made up of. The data collection and gait 

segmentation are introduced in Section 3. Section 4 

introduces several most popular neural network models 

and the four network architectures that we implemented in 

this study. Sections 5 and 6 show the result and discuss 

certain limitations and drawbacks to be improved in the 

future. Finally, Section 7 concludes the paper. 

2. Literature Review 

2.1. Gait Phase Analysis 

Human walking is a cyclical and repetitive motion. The 

entire walking cycle can be divided into stance and swing 

phases, shown in Figure 1 [8]. Gait phase percentage 

differs depending on individual walking speed and gait 

personal gait characteristics. In general, the stance phase 

and swing phase takes about 60% and 40% of the gait 

cycle, respectively. A conventional stance phase can be 

divided into initial contact (heel strike), loading response, 

mid-stance, terminal stance, and pre-swing period. Two 

double suppose period occurs at the beginning and the end 

of the stance phase, where two feet are in contact with the 

supporting surface. The swing phase can be subdivided 
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into the initial swing (toe-off), mid-swing, and terminal 

swing. In this project, the first 50% of the swing phase 

(starting from toe-off to mid-swing event) will be used as 

training data, and the cartesian position of the heel strike 

event at the next gait cycle, where the right foot initial 

contacts with the support surface, will be used as the 

ground truth label. 

2.2. Gait Features 

Human gait features can be categorized into three 

components [9]: spatiotemporal, kinematics, and kinetics 

features. 1) Spatiotemporal features are the most 

commonly used feature to describe gait patterns, including 

gait cycle, stance phase, swing phase, double limb support, 

single limb support, step duration, stride length, step  

length, step width, and foot progression angle. 2) Kinetic 

features involved the study of dynamic force on walking 

movements, such as measuring the ground reaction 

force(GRF) on the hip, knee, and ankle joints. 3) 

Kinematic feature involves the study of walking motion 

without taking the force into account, such as analyzing 

the position, displacement, velocity, and acceleration of 

certain body areas or join (e.g., ankle, knee, hip, pelvis, or 

heel) [9], [10]. As we can see in [6], [9], most of the 

research that had been conducted on the traditional 

machine learning method requires a lot of manual feature 

selection and extraction steps before the training process. 

A deep learning approach not only can remove those 

cumbersome processes but is also capable of learning all 

useful features more effectively during the training phase. 

3. Dataset 

3.1. Data Preparation 

 

 
Figure 2: EDA plot of normalized displacement, velocity, 

and acceleration along the x-y-z axis respectively on the 

first 3000 timeframes (~300 sec) of HAR Dataset. 

 

The Bath Natural Environment HAR dataset in [7] was 

collected with five Suunto Movesense wearable IMU 

sensors attached to ankles(two), hips(two), and chests of 

22 healthy and injury-free adults with various ages (mean 

29, std 10) and gender (17M, 5F) while walking across six 

different locomotive activity: Walking (179min, 9438 

steps), Stair Ascent (23 min, 1286 steps), Stair Descent 

(20min, 1280 steps), Ramp Ascent (12min, 656 steps), 

Ramp Descent (13 min, 754 steps), and Stop (20 min). 

After some data processing, we plot the displacement, 

velocity, and acceleration along the x-y-z axis in Figures 2 

and 3. 

Owning to a lot of noise in the IMU data, it is infeasible 

to perform the gait segmentation, segmenting the whole 

sequential data into each gait cycle that starts from toe-off 

to heel-strike event, on all walking activities across 

different participants. On the other hand, since we need  

Figure 1: Schematic diagram of a complete gait cycle on a healthy human [8]. 
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Figure 3: Zoom-in plot of displacement along the z-axis. 

 

 
Figure 4: EDA plot of displacement, velocity, and 

acceleration along the x-y-z axis respectively on the first 

1500 timeframe(~150 sec) of Motion-Capture Dataset 

the gait trajectory and ground truth position at each heel-

strike event for training the model, we decided to use our 

motion capture device, Vicon Nexus 2.12 system, to 

collect the data for better training results, which will be 

named as Vicon dataset in this project. The data was 

collected with a marker placed on the right shank of a 

healthy normal human and a walking speed of 0.4m/s for 3 

min at 100 HZ, and the Exploratory Data Analysis (EDA) 

plots on a subsequence of 1500 time steps are shown in 

Figure 4. The details about the data collection plan and 

environment setup can be seen in Appendix A. 

3.2. Gait Segmentation 

Gait segmentation is a crucial step in gait analysis and 

foot-placement prediction. In general speaking, gait 

segmentation involves the detection of the following three 

sub-phases of stance: heel contact, flat foot contact, push-

off (or heel off), and limb swing [11]. However, in this 

project, for simplifying the process, we follow the 

algorithm described in [6], where a gait cycle contains 

three events (toe-off, mid-swing, and heel-strike) in the 

swing phase and must happen in the sequence shown in 

 
Figure 5: Gait segmentation result of displacement on the 

z-axis 

Figure 1. All gait cycles that do not meet this requirement 

will be discarded. The gait segmentation result of 

displacement along the z-axis is shown in Figure 5. The 

red dashed line indicates the toe-off event, where the foot 

completely leaves the ground, and the following three 

cycles indicate three sub-phases (toe-off, mid-swing, and 

heel-strike) required for a completed gait cycle. The 

position of the heel-strike event will be used as the ground 

truth position for training later.  

A similar algorithm for gait segmentation can be 

referred to [11] and a deep learning approach [12], [13] 

that might be more reliable on various human gait and 

generalize better in some challenging conditions involving 

multiple activities (e.g., running, walking upstairs and 

downstairs, walking uphill and downhill). 

4. Methodology 

4.1. Neural Network 

The conventional ML approach requires manual gait 

feature selection. As an example of the Bayesian inference 

approach shown in [6], this process can be time-

consuming and requires a practitioner has a solid 

understanding of gait features and underlying algorithms. 

Thus, many researchers had turned their focus to the 

success of deep learning, such as [14], Zhang. K used 

CNN based unsupervised cross-subject adaptation network 

for predicting the human locomotion intent and activity 

states of the subject with over 90% accuracy. The crux of 

using a neural network for foot placement prediction was 

stimulated by the well-known universal approximation 

theorem [15], a neural network with a nonpolynomial 

activation function can approximate any continuous 

function.  

A standard fully connected multiplayer network 

consists of the following characteristics: 1) a vector of 

“weights” denoted 𝑊 = 𝑤1, 𝑤2, … , 𝑤𝑛, 2) an activation  
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Figure 6: An example MLP neural-network structure with 

a single hidden layer (bias is omitted for brevity). 

function 𝜎: 𝑅 → 𝑅, �̂� = 𝜎(𝒘⊤𝒙 + 𝑏) = σ(∑ 𝑤𝑖𝑥𝑖𝑖 + 𝑏) =
𝜎(𝑥1𝑤1 + 𝑥2𝑤2 + ⋯ + 𝑥𝑛𝑤𝑛 + 𝑏), such as Sigmoid, 

ReLU, Tanh; 3) an error function, 𝐸 = ℒ(𝑌, �̂�) that 

measure the difference between predicted results and 

desired results, such as Mean Absolute Error, Mean 

Squared Error, Categorical Cross entropy Loss,  [15]–[17];  

The conventional training process takes a training 

dataset 𝐷 = {(𝑿, 𝒀) = (𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁)} and feed into 

the network to learn a predictive model �̂� = 𝑓θ(𝑥) that is 

parameterized by θ, by solving   

 
, where ℒ is the loss function, and ω is a predefine 

assumption about the learning processes, such as the 

optimizer, learning rate, and activation function that is 

chosen for the network [16]–[19]. 

For example, a three-layer of multilayer perceptron’s ( 

MLP) network, shown in Figure 6, contains four neurons 

as the input layer, four neurons in the hidden layer, and 

two neurons in the output layer. Assuming sigmoid is used 

as the activation function, 

𝑦1̂ = σ(𝒙, 𝒘) =
1

1 + 𝑒𝒘𝑻𝒙
 

and mean square error are used as the loss function, that is 

𝐸(𝑾) =
1

2
∑ (𝑦�̂� − 𝑦𝑘)2

𝑘
 

Then, with a typical mini-batch gradient descent algorithm 

as the objective function optimizer, we will have the 

following algorithm for training the model: 

 

1. Initialize weights randomly 𝑾𝒊 ~𝑁(0,  𝜎2) 

2. Loop until convergence: 

3.   for 𝑖 ← 1 𝑡𝑜 ⌈
𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒

batch_size
⌉  do: 

4.    for 𝑗 ← 1 𝑡𝑜 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 do: 

5.     Compute Gradient, ∇𝐽(𝑾𝑖  ) =  ∇𝐽𝑗(𝑾𝒊 ) +

∇𝐽(𝑾𝒊 ) 

6.    ∇𝐽(𝑾𝒊 ) =
1

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒
∇𝐽(𝑾𝒊) 

7.    Update parameter, 𝑾𝒊+𝟏 ← 𝑾𝒊 −  𝜂∇𝐽(𝑾𝒊) 

8. Return weights 

 

With much evidence shown in [9], [14], [20], [21], the 

neural network-based approach, especially deep neural 

network with convolutional neural network (CNN) 

module, outperformed other traditional machine learning 

methods in the field of gait analysis, including SVM, 

Decision tree, LDA, Bayesian classifier, Random forest, 

kNN. Thus, we believe that, with a delicate design of deep 

learning architecture, the accuracy of foot placement 

prediction published in [6] can also be improved 

significantly. 

4.2. Recurrent Neural Network (RNN) 

Using a traditional neural network model (e.g, Dense 

Neural Network (DNN), or Convolutional Neural Network 

(CNN)) to handle gait trajectory with variable dimensions 

input data can be a difficult task. Recurrent neural network 

(RNN) is a special kind of deep learning model, and it has 

been widely used in many areas related to sequence data 

processing, including machine translation[22], speech 

recognition[23], image captioning [24], and video analysis 

task[25]. A typical RNN network is shown in Figure 7, but 

there are many ways to design the recurrent connections, 

including a recurrent network without output, sequence-

input, and single-output, sequence-input, and sequence-

output, RNN with teacher forcing, Bidirectional RNN, etc 

[17].  The looping structure designed within RNNs makes 

it well-suited for processing and modeling sequential data 

with a variable number of input and output dimensions. 

However, owing to the vanishing and exploding gradient 

problem mentioned in [26], it is challenging to train RNNs 

networks to solve problems that require learning long-term 

dependencies. As many research applications [27]–[29] 

had shown that an LSTM network can be a more effective 

approach in long-range reasoning for nonlinear sequential 

data with various lengths. 

4.3. Long Short Ter Memory (LSTM) 

Long Short-Term Memory (LSTM) network was first 

introduced by Hochreiter & Schmidhuber in 1997 [30], in 

which the problem of training conventional RNNs 

network was solved by introducing a more effective 

gradient learning method with some gating mechanisms 

that can store, retrieve, and remove information over a  

longer sequence. In around 2014, many researchers 

contributed to refining the LSTM network and achieved 

greater success in language processing-related tasks [31]–

[33], and now it was widely known.  
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Figure 7: A typical RNN network graph that maps a 

sequence of input 𝒙 to a corresponding sequence of output 

𝒐, and then the difference between output 𝒐 and target 

output 𝒚 will be measured by a loss function 𝓛(𝒚, 𝐨) [17]. 

 
Figure 8: A typical LSTM network structure [34] 

A typical LSTM network structure is shown in Figure 8. 

Two vectors (𝐶𝑡 , ℎ𝑡) need to be maintained at each point of 

the network, where 𝐶𝑡 is the cell state vector and ℎ𝑡 is the 

output vector. Three gate blocks are used to control the 

flow of data: forget gate, input gate, and output gate, and 

their mathematical expressions are shown in equations (1) 

to (3) respectively. 

The LSTM network use forget gate to decide what 

information will be removed. A sigmoid function is used 

here to output a value between zero and one to keep the 

network differentiable, where zero means removing 

everything from the last output ℎ𝑡−1, and one means 

letting everything pass through [33], [34]. 

 𝑓𝑡 = σ(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

The input gate decides what new information we want 

to add to the next cell state 𝐶𝑡, and the candidate's new 

state 𝐶�̃� will be multiplied with a scaling factor 𝑖 and 

added to the last cell state 𝐶𝑡−1 (the * here indicates 

element-wide multiplication) [33], [34]. 

 𝑖𝑡 = σ(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  

 𝐶�̃� = tanh(𝑊𝐶[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (2) 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̃�  

The output gate decides what information is used as 

output. A 𝑡𝑎𝑛ℎ activation function is used on the updated 

state value 𝐶𝑡 to ensure the value is ranged between -1 and 

1 [33], [34]. 

 ot = σ(Wo[ht−1, xt] + bo)  

 ht = ot ∗ tanh(Ct) (3)  

4.4. Bidirectional Long Short Ter Memory (Bi-LSTM) 

LSTM is a unidirectional network and only can 

preserves information in the past, whereas Bidirectional 

LSTM (Bi-STM) operates on the input sequence from two 

directions (start-end and end-start). This approach not only 

allows the network to take information from both the 

future and past into consideration in predicting the result 

but also has the advantage of learning data sequences with 

long-time dependencies [35]. The study result in [35] has 

shown that Bi-LSTM performs significantly better than 

any other neural network on the task of framewise 

phoneme classification, including RNN, Bidirectional 

RNN (BRNN), and LSTM. Besides, some latest gait 

analysis-related research has already adopted this method 

in developing their network architecture and shown a good 

performance increase in accuracy [28], [36], [37].  

4.5. Attention Mechanism 

The idea of the attention mechanism was first 

introduced by Bahdanau [38] to address the bottleneck 

issue of the fixed-length vector that is being used in the 

encoder-decoder architecture for neural machine 

translation (NMT). As this approach achieved great 

success in improving the performance of the NMT model, 

the attention mechanisms started to gain more attention 

and many variants have been created [39], [40]. The 

underlying details in [38] can be quite complicated to 

demonstrate here, but the idea is simple. In traditional 

LSTM-based NMT, the encoder-decoder architecture is 

often used, where the encoder will encode the whole input 

sequence into a fixed-length vector, and a translation with 

the target language will be decoded as output. With the 

attention mechanism, the encoder will pass all the hidden 

states to the decoder, and the decoder will enhance the 

weight of the selected subset of words that is more 

relevant to what is presently translating and diminish the 

other. Thus, the model can process long sequence data 

more effectively [38]. There are many variants of attention 

mechanisms created in recent years [39], [40], but the one 

that we implemented for foot placement prediction is 

adapted based on Bahdanau’s version described in [38]. 
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4.6. Proposed Network Architecture 

The overall pipeline of our project consists of three 

components: data processing, fitting deep-learning model, 

and performance evaluation, as shown in Figure 9.  

 

Data Processing:  

The data processing phase will perform a sequence of 

tasks, including data loading, manipulating data into the 

desired format, visualization and inspection, gait 

segmentation, normalization, and train-valid-test splitting 

with an 80-10-10% ratio. At the end of data processing, 

the training and validation data will be well-prepared to 

feed into our deep learning model, and the testing dataset 

is ready for performance evaluation as well. 

Deep-learning Algorithm Architecture: 

For this project, we created 4 different neural network 

architectures for comparison.  

Model 1: LSTM 

The first model that we implemented contains a single 

LSTM layer with 128 cells, and the output of the LSTM 

layer directly flows to the fully connected layer with 2 

units. The stacked LSTM network architecture is shown in 

Figure 10 a), and the model summary produced with 

TensorFlow is shown in Figure 11. 

Model 2: Bi-LSTM 

Even though our foot placement prediction model might 

not require the information for future gait trajectory, we 

still implemented a stacked Bi-LSTM network architecture 

for verifying its validity and comparing it to other models. 

The network architecture is shown in Figure 10 b), and the 

model summary produced with TensorFlow is shown in  

 
Figure 10: Four proposed neural network architectures, 

and 𝒖𝒊 is the number of cells in layer i. a) Model 1: a 

single LSTM layer with 128 cells. b) Model 2: single Bi-

LSTM layer with 128 cells. c) Model 3: an LSTM and a 

Bi-LSTM layer with both 128 cells. d) Model 4: an 

attention layer added to model 1.  

Figure 12. 

Model 3: LSTM + Bi-LSTM 

The third network architecture is composed of a layer of 

LSTM and a layer of Bi-LSTM with 128 and 128 cells 

respectively. The network architecture for model 3 is 

Figure 9: The overview of training pipeline, data processing, model training, and performance evaluation 
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Figure 11: Model 1's model summary  

 
Figure 12: Model 2's model summary  

shown in Figure 10 c), and its corresponding model 

summary produced with TensorFlow is shown in Figure 

13. 

Model 4: LSTM + Attention 

In model 4, the attention layer is inserted at the end of 

the LSTM layer. The attention layer can be thought of as a 

“single unit Dense layer” and has 131 trainable parameters 

in total, where a length of 128.“attention weight” vector 

matched to the output size of LSTM, and 3 bias terms 

matched to the 3 data sequences for each gait trajectory. 

The network architecture is shown in Figure 10 d), and its 

corresponding model summary is in Figure 14. 

 

Performance Evaluation:  

All four models described above are trained with mean 

square error (MSE) as a loss function, shown in equation 

(4). During the training process, an early stop criterion 

was applied to monitor the validation loss, so that the 

training process would stop if there were not any 

improvements for the next 10 epochs. The model with the 

lowest validation loss throughout the training will be the 

final one used for testing. The validation sets were 

specifically used for evaluating the model during 

hyperparameter tuning, model fitting, and model selection,   

 
Figure 13: Model 3's model summary 

 
Figure 14: Model 4's model summary 

and the test set is the data that has not been seen by the 

algorithm and is what will be used for evaluating the 

generalization performance of the model. While 

evaluating the performance on the test set, there are two 

loss metrics were used, mean absolute error (MAE) and 

mean squared error (MSE), which are shown in Equations 

(4) and (5): 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑖 − 𝑌�̂�)

2
𝑁

𝑖=1

 (4) 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑌𝑖 − 𝑌�̂�|

 
𝑁

𝑖=1

 (5) 

where 𝑌𝑖 and 𝑌�̂� are the ground truth position and predicted 

position for ith gait trajectory, and n is the total number of 

gait trajectories of the given dataset. 

4.7. Training and Hyperparameter Optimization 

Details 

All present network was trained by using stochastic 

gradient descent (SGD) optimizer [41] with learning rate 

and momentum at 1e-6 and 0.9, and the number of epochs 

and batch size were 200 and 8, respectively. The dropout 

rate of all dropout layers was set at 0.2. The network was 
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implemented by using Python (https://www.python.org/, 

accessed on 15 Dec 2022) v3.9.12 and TensorFlow 

(https://www.tensorflow.org/, accessed on 15 Dec 2022) 

v2.9.1 on a Windows 10 computer with an Intel Core i7-

11800H @ 2.3GHz, an 8 GB memory chip (GDDR6 

SDRAM), and a graphics card (GeForce RTX 3080). 

5. Result 

All four models were evaluated on the same test set, and 

their results are shown in Table 1. 

 

Model 
MAE 

loss 

MSE 

(RMSE) 

loss 

Time 

ms/step 

Model 

size 

LSTM 10.53 
132.03 

(11.49) 
29 117,506 

Bi-LSTM 10.89 
139.19 

(11.80) 
41 235,010 

LSTM + 

Bi-LSTM 
11.08 

143.19 

(11.97) 
33 380,930 

LSTM + 

Attention 
9.62 

109.62 

(10.47) 
29 117,637 

Table 1: Performance of the deep learning models on the 

test dataset. 

Figure 15 shows the mean square loss on training and 

validation set throughout the training process, and they 

were plotted with blue and orange colors respectively.  

6. Limitation and Analysis 

According to the result in Table 1, the RMSE for LSTM 

and Bi-LSTM is 11.49 and 11.80 respectively, and Bi-

LSTM did not show an advantage over LSTM. Instead, 

adding the Bi-LSTM layer on top of LSTM raise the 

RMSE to 11.97, and this deteriorated the performance of 

prediction on the test set. For the last model, model 4, the 

Attention Layer was added to the top of the LSTM layer. 

By comparing the result of model 4 and model 1, adding 

the attention layer reduced the prediction error without 

much increase in the network size.  

Figure 15 examines the loss on training and validation 

set during the training process, besides certain fluctuations 

presented in the training loss of model 1, all models that 

we trained did not appear overfitting. 

Besides all observations shown in the result, there are 

some limitations or potentialities that can be improved in 

the future. First, the dataset that we used in this project has 

one specific walking speed, 0.4m/s, and this is not 

sufficient if we desired a learning model with higher 

generalization ability and being robust to various walking 

conditions, such as walking uphill/downhill, and walking 

upstairs/downstairs. Second, all four models implemented 

in this project are simply for verifying the validity of the 

attention mechanism and measuring the effectiveness of 

 
Figure 15: Training loss vs validation loss on four 

models. a) model 1: top left. b) model 2: top right. c) 

model 3: bottom left. d) model 4: bottom right. 

adding an attention mechanism to the LSTM network 

architecture on the food placement prediction task. A more 

serious version of attention-based network architecture can 

be implemented in the future for achieving better 

performance, and other attention mechanisms such as 

Luong’s version attention layer [40], Self-attention, and 

Multi-Headed attention [39]are also worth investigating. 

Third, hyperparameter tuning. Due to time constraints, we 

did not spend a huge amount of time fine-tuning the 

hyperparameter and the selection of various loss functions 

or optimizers, and we believe there is spacious room for 

finding the optimal set of hyperparameters. Last, a better 

gait segmentation approach. The current gait segmentation 

methods are software based only, and this might not be 

perfect, especially when multiple activities (e.g., running, 

stair ascent/descent, etc) are involved. A more accurate 

and precise gait segmentation might require the support of 

hardware devices (e.g., foot-switches device) to detect and 

record the foot position at toe-off and heel-strike events. 

7. Conclusion 

Our outcome has demonstrated that adding an attention 

mechanism to the LSTM neural network architecture can 

make the model to be more precise in food placement 

prediction. After adding the attention layer to the LSTM 

network, the MAE, MSE, and RMSE prediction error has 

reduced by about 8.64%, 16.97%, and 8.88% respectively. 

Compared to the result that was produced with the 

Bayesian inference probability approach in [6], 8.85 to 

12.39 RMSE varied on different test conditions, our result 

is comparable to the previous state-of-the-art performance 

and has huge potential to improve in the future. In 

addition, such an approach that we proposed in this study 

can be generalized to any walking-aid robot, and the 

experimental result that we collected can be useful for 

other researchers to design the robot to be more intelligent 

and comfortable for the patients. 
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Appendix A: Data Collection Plan (Draft) 

- Format: 

 

- Length: > 5000 Steps, each step consists of a 

complete stance and swing phase as shown below 

[8]: 

 

- Speed: Normal walking speed 1.2-1.4 m/s [42] 

- Subject: Normal and Healthy human 

- Marker position: Right heel [6] 
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