
EC527 Spring 2022, Project Report

CNN Optimizations
Zhengqi Dong, Yunlu Deng, Pingcheng Dong

{dong760, yldeng, pingchen }@bu.edu

1. Problem Statement
The code we are going to optimize is multilayer-perception-in-C4. The writer is the user
“manoharmukku” on github. Here is the link and we also add it in the reference part:
https://github.com/manoharmukku/multilayer-perceptron-in-c

1.1. What is MLP and our code structure

Multiple Perception (MLP) is a kind of mode of feedforward artificial neural network(ANN) in
machine learning. MLP can be used in a lot of problems.

Figure 1: MLP and code instruction

As we can see in the figure 1, MLP is a fully connected class which consists of three kinds of
layers of the nodes, input layer, hidden layerN(N=1,2,3, etc), output layer. Each layer has
several nodes and these nodes are fully connected. MLP uses a supervised learning technique
called backpropagation for training the model.3 Two nodes will be connected by a nonlinear
activation function and the code will these layers to calculate the weight. The weight is the final
result of our training.
The code we are going to optimize is based on a single MLP model. By changing the input
arguments, we can choose the specific way to train the model, such as the number of hidden

mailto:mtao@bu.edu
https://github.com/manoharmukku/multilayer-perceptron-in-c

EC527 Spring 2022, Project Report

layers, each hidden layer size, the kind of nonlinear activation functions and so on. There is an
example in figure 1 and the next is the table of the each argument meaning:

Figure 2: Input arguments4

For this project, we are going to optimze the project. The original code is consisted of 100% C
language without any optimize method. So, it is possible to use several optimization method to
shorten the training time, such as serial, parallel, GPU and so on. In this project, our group will
try to use all these ways to achieve this goal. Here is the plan:

1.Single-core CPU optimization(serial): loop unrolling, blocking;
2.Multi-core CPU optimization(parallel): OpenMP, pthread, SIMD vectorization;
3.GPU optimization: Naive single and multiple CUDA block implementation, cache and

constant memory, two strategy of tiled algorithms

1.2 Functions running time

EC527 Spring 2022, Project Report

Determine which function to be optimized first!
The first step of this project is to determine the optimization part. There is a good tool that can
help us to do that — program profiling.
“Flat profilers compute the average call times, from the calls, and do not break down the call
times based on the callee or the context.”5

“The flat profile shows how much time your program spent in each function, and how many
times that function was called. If you simply want to know which functions burn most of the
cycles, it is stated concisely here. See The Flat Profile.”6

To understand where our program spent its time and on which pieces of code while it was
executing, we need to profile the program. That is, we want to measure the time that each
function has spent, and it further helps us to determine where the critical functions are, the
pieces of code we should optimize with.
Here is the result of the Flat profiler:

Figure 3: Profile result

From the above result, we see that our program spent 52.62% (12.20 sec) of time in
back_propagation, and 20.51% (4.75 sec) on calculate_local_gradient, and 15.50% (3.59 sec)
on mat_mul (We only consider the top3 for our project).

EC527 Spring 2022, Project Report

Flat Profiler only shows which functions get called and by how many times. With call graphs, we
can go deeper, a more granular way to profile the program. We can understand the function
dependency of a function, such as which functions are called within, and by how many times,
and this will help us to eliminate the unnecessary functions that take a lot of time. Here is a
snippet of call graph result:

Figure 4: call graph result

With this call graph, we can see that back_propagration is the one that takes more of time: itself
takes 12.20 sec, and 5.34 sec by its child (or callee). The second function that takes most of the
time is forward_propagation, which takes 1.16 sec by itself, and 4.35 sec by its child.

EC527 Spring 2022, Project Report

Figure 5: call graph part1

By looking at the child function of back_propagration, we see that calculate_local_gradient is the
one that takes most of the time, 4.75 sec by itself, and 0.59 sec by its child.

Figure 6: call graph part2

By looking at the child function of forward_propagation, we see that mat_mul is the one that
takes most of the time, 3.59 sec by itself, and 0.00 sec by its child.

Figure 7: call graph part3

Therefore, by ranking the time cost of each function in descending order, we will mainly focus on
three functions: back_propagation(52.62%), calculate_local_gradient(20.51%), mat_mul
(15.50%).
Further analyzation:
Analyzation in back_propagation.c
Based on the analyzation above, in order to get more detailed information, we insert several
time record functions into this file, like:

Figure 8: time record example

After compiling and running, here is the result:

EC527 Spring 2022, Project Report

Figure 9: result

So that our main objective is to optimize the function:
func1:

Figure 10: function1

func3:

Figure 11: function2

func5 and func6:

Figure 12: function3

EC527 Spring 2022, Project Report

2. Single-Core CPU Optimization
Code directory:
https://github.com/drago1234/EC527_CNNs_Optimization/tree/main/multilayer-perceptr
on-in-c-single-core
2.1 code can be optimized
From the previous time analysis part, we have found that the most time consuming part of the
program is in the trainer and back_propagation part. After running the time test for each part of
the back_progation, we found that there are one double for loop and two triple for loops, which
cost most of the time. Hence, we decided to optimize these three for loops.

Figure 13: Single-code optimization functions
2.2 ways to optimize
We decided to try to unroll the for loop and try to use the openmp.

2.3 unroll the for loops
We have tried to unroll the loop by 2, 4 and 8. Then we run the speed test at the size of 10000
and 100000. We got some positive results. We found that after unrolling by 2, the cost of time
will decrease significantly, and after unrolling by 4, there will be some slight decrease in time
consuming, but after unrolling by 8, the cost of time is more than unrolling by 4.

EC527 Spring 2022, Project Report

Figure 14: Single-core unroll result

2.4 try to use openmp
As we can see, there are many for loops in the back_propagartion, so we decided to try openmp
for all of the for loops. The platform we tried is i5-8279U which has 4 cores and 8 threads with
2.4Ghz. However, we found that it is not satisfying for the results of openmp.

Figure 15: Single-core unroll-OpenMP result

2.5 conclusion
After we have tried the way above, we found that unrolling the for loops is an effective way to
optimize the back_propation, but the openmp is not suitable for this. We have figured that the
iteration in the back_propation is decided by the layer size which is not as large enough to
overcome the extra time of openmp to create threads and control threads. Therefore, we
decided to use multiple threads in the trainer which have large iterations.

3. Multi-Core CPU Optimization
3.1 Optimization code
Pthread:
https://github.com/drago1234/EC527_CNNs_Optimization/tree/main/multilayer-perceptron-in-c-o
penmp

https://github.com/drago1234/EC527_CNNs_Optimization/tree/main/multilayer-perceptron-in-c-openmp
https://github.com/drago1234/EC527_CNNs_Optimization/tree/main/multilayer-perceptron-in-c-openmp

EC527 Spring 2022, Project Report

OpenMP:
https://github.com/drago1234/EC527_CNNs_Optimization/tree/main/multilayer-perceptron-in-c-p
thread

3.2 Choose Optimization part
In part 1.2, we have discussed the parts of code this project would like to optimize. However, not
all parts of code optimization will work for a specific optimization method. For example, the
multi-core CPU optimization part includes OpenMP and Pthread. The key precondition for these
two methods is the assignment of each method should be large enough. Otherwise, the cost of
threads can not be compensated by the time saving of optimization methods. For example, a
failure version of pthread optimization chooses to insert the pthread into the function mat_mul
which has been mentioned in figure 7. The result shows that the execution time will be 1000
times slower.
The organization of original code likes running a small step with a large number of times. So the
main loop would be the best part for me to insert the threads. In this way, each thread can work
on a large number of assignments. The main loop:

Figure 16: Multi-core optimization function

For this double loop, under the condition of figure 1, the number of innermost code will be
execute 10000*1096 times. It is large enough to use OpenMP and Pthread here.

3.3 Dependence

Dependence is the key factor which depends if the code can be paralized. In order to use
OpenMP and Pthread to optimize the code, it is necessary to make sure that the paralyzation
will not influence the final result. That means, the variable in one thread which is going to be
read will not be written by another thread. For example, thread 1 writes the value 1 into the
variable A and is going to read it 10ms later. However, during this 10ms, thread 2 may write the
value 2 into the variable Also that when thread 1 reads A, it will get a wrong value.
In the original code, there is a triple array called “para->weight” that breaks the dependence
rule. As it shows in these two figures:

https://github.com/drago1234/EC527_CNNs_Optimization/tree/main/multilayer-perceptron-in-c-pthread
https://github.com/drago1234/EC527_CNNs_Optimization/tree/main/multilayer-perceptron-in-c-pthread

EC527 Spring 2022, Project Report

Figure 17: Para->weight write in function back_propagation

Figure 18: Para->weight read in function back_propagation

As we can see in figure 17 and 18, the variable “para->weight” breaks the dependence rule and
it saves the result of weight correction after the loop. So I use another variable, a four
dimensional array called “weight-in” which can be seen in figure 16 in order to save the weight
correction result of each thread and merge them together at the end.

EC527 Spring 2022, Project Report

3.4 Result

Figure 18: Output example

Origin_src Pthread_4 Pthread_8 Pthread_1
6

OpenMP_3 OpenMP_
4

OpenMP_5

1000*1096_Time(s) 7.53 2.48 1.64 1.65 2.88 2.4 1.98

10000*1096_Time(s) 75.04 24.96 20.34 17.77 26.59 23.46 21.08

100000*1096_Time(s) 758.56 249.49 183.97 188.49 295.87 283.51 287.03

1000*1096Optimize_rate(%) 100 303.62 459.14 456.36 261.45 313.75 380.30

10000*1096Optimize_rate(%) 100 300.64 368.92 422.28 282.21 319.86 355.97

100000*1096Optimize_rate(%) 100 304.04 412.32 402.44 256.38 267.56 264.27

Table 1: Final result table

EC527 Spring 2022, Project Report

Figure 19: Running time optimization plot

EC527 Spring 2022, Project Report

Figure 20: Optimization rate plot

The figure 18 shows an example of the output of the code which includes the optimization
method, training time, result and accuracy. The project aim is to try our best to shorten the time
as much as possible. The table 1 shows the result of the test we have done. As we can see in
table 1, the pthread can optimize the code up to 456.36% better than the original code and the
OpenMP can do so up to 380.30%. The optimization has made a huge improvement.

4. GPU Optimization (Zhengqi Dong)

A short intro to 1D CNNs optimization with CUDA
As we have seen previously, the MLP is a simple example of a fully connected neural network,
where every neuron in one layer has a connection to every neuron in the next layer. This type of
network is “structure agnostics”, a general-purpose connection that makes no assumption about
the feature in the input data. However, as we see in many research papers [1-2, 7] have shown
that this type of network can be very memory (weight) and computationally expensive to train,
and a convolutional neural network(CNN) is often used in feature extraction. Therefore, instead
of optimizing the original vector-matrix multiplication, we will generalize to a convolution
operation that can take the various sizes of mask_width as input to perform the computation.
For simplicity we will start to optimize the performance of 1D convolutions, and the CPU version
implementation of baseline CNN has shown below in Code1:

Code1: 1D CNN CPU baseline code

EC527 Spring 2022, Project Report

void conv_1D(float *N, float *M, float *P, int mask_width, int
N_rowlen){

int i;
float Pvalue;
int halo_width = (mask_width - 1) / 2;
int left_end = halo_width; int right_end = N_rowlen-halo_width;
for (i = halo_width; i < N_rowlen-halo_width; i++){

Pvalue = 0;
for (int j = 0; j < mask_width; j++){

Pvalue += N[i - halo_width + j] * M[j];
}
P[i] = Pvalue;

}
}

The idea of the convolution is pretty simple, where each output data element is a weighted sum
of a collection of neighboring input elements, and the weights that are used in weighted sum
calculation are defined by the input mask array, which commonly referred to as the convolution
kernel or convolution masks. In this function conv_1D, we have an input array float *N, mask
array float *M, and an output array float *M that has the same length N_rowlen as the input
array N. For avoiding the boundary condition where the calculation involves missing input
elements, 0 will be used to for those filled-in elements. This technique is often known as
padding, and those missing elements are typically referred to as “ghost cells” or “halo cells” in
literature. For example in the Figure 21 below, the calculation of P[1] will be:

P[1] = N[0]*M[0]+N[1]*M[1]+N[2]*M[2]=1.8
As we can see the calculation will involve one missing input element that filled with zero, and
those missing element that circled with dash-line will be referred to as “halo cells”. The width of
halo_cell can be formulated as (mask_width - 1) / 2 or ceil(mask_width / 2),
where the length of mask_width is assumed to be odds number.

Figure 21: 1D conv boundary case

After we have defined the boundary position, the right end and left end, of the output array, we
then can simply just use for loop to compute the weighted sum for each output element P[i]. As

EC527 Spring 2022, Project Report

we can see that each innermost loop involves one floating multiplication and addition, and two
unique reads to the global memory, so the Arithmetic Intensity(AI), or the ratio of floating-point
arithmetic operation per byte of global memory access, is about 1 in the kernel function, which is
a very small portion of the peak performance.

Based on previous analysis, we observed that the calculation of output array P can be
decomposed to multiple individual isolated computations, and this makes the convolution
operation to be an ideal problem for parallel computing with CUDA. In general speaking, we can
simply just map the computation involved for each output element to each CUDA thread, and
each CUDA thread will perform the convolution operation accordingly. The baseline GPU
implementation of convolution operation is shown below:

Code2: 1D CNN GPU Baseline code
__global__ void cuda_conv_1D_multi_block(float *N, float *M, float
*P, int mask_width, int N_rowlen){

int i = blockIdx.x * blockDim.x + threadIdx.x; // i is [0,
P_ARR_LEN-1]

float Pvalue = 0;
int halo_width = (mask_width - 1) / 2; // assume mask_width is

odd number
if (i < halo_width || i > (N_rowlen - 1 - halo_width)) return;

// 1 off for idx
for (int j = 0; j < mask_width; j++){

Pvalue += N[i - halo_width + j] * M[j];
}
P[i] = Pvalue;

}

1D CNN with cache and constant memory

The AI for the kernel function is still one. However, if we look at the code closer, we can observe
several properties for the mask array: 1) The mask array M that is used in convolution operation
is fairly small compared to the input array length; 2) The contents of the mask array M does not
change throughout the whole execution; 3) The execution order that we need to access mask
array is the same for each computation of output array P[i], or even better, that actual
computation order for each our array P[i] can be different. With all those properties mentioned,
we can see that the mask array is an excellent candidate for constant memory. Therefore, we
can optimize the performance by using the constant memory, as shown in Code 3 below:

Code 3: 1D CNN with constant memory
#define MASK_WIDTH 3 // array size for mask (M)
__constant__ float d_mask_constant[MASK_WIDTH];

EC527 Spring 2022, Project Report

__global__ void
cuda_conv_1D_multi_block_with_mask_in_constant_memory(float *N, float
*P, int mask_width, int N_rowlen){

int i = blockIdx.x * blockDim.x + threadIdx.x; // i is [0,
P_ARR_LEN-1]

float Pvalue = 0;
//Skip halo cells
if (i < halo_width || i > (N_rowlen - 1 - halo_width)) return;
for (int j = 0; j < mask_width; j++){

Pvalue += N[i - halo_width + j] * d_mask_constant[j];
}
P[i] = Pvalue;

}

Now, by putting the mask array into constant memory, we reduce the number of global memory
access for each iteration to one, so the ratio of floating-point arithmetic to memory access has
doubled to two. The result that we compute for Code 1 and 2 has been shown in Table 2 and 3:

rowlen CPU(msec） GPU(msec) Speedup

1000 0.0600 0.5790 0.1036

100,000 2.5730 1.3468 1.9105

10,000,000 119.0000 33.7104 3.5301

1,000,000,000 10150.0000 3327.1500 3.0507

Table 2: Benchmark Performance for Code 2(GPU baseline)

rowlen CPU(msec） GPU(msec) Speedup

1000 0.059 0.5508 0.1071169

100,000 2.513 1.372 1.8316327

10,000,000 124.8 34.298 3.6386961

1,000,000,000 9804.3121 3110.98877 3.15151

Table 3: Benchmark Performance for Code 3(constant memory)

Tailed Algorithm
The above results were ran in SCC with NVIDIA Tesla V100-SMX2. We can see that the
performance has increased slightly, and I think this is because we hit the memory bandwidth.
Therefore, in order to handle this issue, we need to find a way to reduce the parallel algorithm.
A good approach is to use the tiled algorithm, where we have all threads within a block

EC527 Spring 2022, Project Report

collaboratively to load the input element into a on-chip memory(e.g., shared memory in GPU),
and then those corresponding output element within a block can simply just reading the content
of input array from shared memory rather than reading from global memory each time.

There are two strategies to implemented tailed algorithm:
Strategy 1:
After we determined the size of the input array length and the number of threads per block, we
can then partition the data and computation based on the block or tile, and the number of block
for the computation is determined with the following formula:
int dimGrid = (P_ARR_LEN + THREADS - 1) / THREADS;
This equivalent to “int dimGrid = ceil(P_ARR_LEN / NUM_THREADS_PER_BLOCK)”,
which will make sure that we only have enough space for all the elements in the output array.
Then all the threads within a block/tile will work collaboratively to load the data from the input
array, and some threads might do extra work for those ghost cells. A schematic diagram is
shown in Figure 22, and the corresponding code is shown in Code 4.

Figure 22: Stragegy 1 of 1D CNN tiled algorithm [8]

Code 4: 1D CNNs with tailed Algorithm Strategy 1
...[Host code]
define NUM_THREADS_PER_BLOCK 16
int GRID = (P_ARR_LEN + NUM_THREADS_PER_BLOCK - 1) / THREADS;
size_t SHMEM = (NUM_THREADS_PER_BLOCK + HALO_CELL*2) * sizeof(int);
cuda_conv_1D_tiled_and_shared_memory_kernel<<<GRID,
NUM_THREADS_PER_BLOCK, SHMEM>>>(d_input, d_output_data, MASK_WIDTH,
N_ARR_LEN);
...
// Strategy 1:

EC527 Spring 2022, Project Report

__global__ void cuda_conv_1D_tiled_strategy1(float *N, float *P, int
mask_width, int N_rowlen){

int tid = blockIdx.x * blockDim.x + threadIdx.x;
extern __shared__ int s_array[];

int halo_width = (mask_width - 1) / 2; // assume mask_width
is odd number

// Loading first set of data into shared memory, starting with
halo cell

s_array[threadIdx.x] = N[tid];
// Maximum Size of the shared memory array
int n_padded = blockDim.x + 2 * halo_width;
// Loading second set of data into shared memory, starting from

offset
int s_offset = threadIdx.x + blockDim.x;
// Global offset for the input in DRAM
int g_offset = tid + blockDim.x;
if (s_offset < n_padded) {

s_array[s_offset] = N[g_offset];
}

__syncthreads();
float Pvalue = 0;
for (int j = 0; j < mask_width; j++){

Pvalue += s_array[threadIdx.x + j] * d_mask_constant[j];
}
if (tid >= halo_width || tid < (N_rowlen - halo_width)){

P[tid+halo_width] = Pvalue;
}

}

Strategy 2:
The idea is similar to strategy 1. In stead of manually handling those halo cells for two set of
loading, we will just directly loading those halo cell from global memory. A simple example is
shown in Figure 23, and the code that I implemented for strategy 2 is shown in Code 5:

EC527 Spring 2022, Project Report

Figure 23: Stragegy 2 of 1D CNN tiled algorithm

Code 5: 1D CNNs with tailed Algorithm Strategy 2
// Strategy 2:
#define TILE_WIDTH 4
__global__ void cuda_conv_1D_tiled_and_shared_memory_kernel2(float
*N, float *P, int mask_width, int N_rowlen){

int i = blockIdx.x * blockDim.x + threadIdx.x;
// Instantiate shared array s_array
__shared__ float s_array[TILE_WIDTH];

// Load data with corresponding idx from N
s_array[threadIdx.x] = N[i];

// Making sure all threads have finished loading data into
shared memory.

__syncthreads();

int halo_width = (mask_width - 1) / 2; // assume mask_width
is odd number

if (i < halo_width || i > (N_rowlen - 1 - halo_width)) return;
// 1 off for idx

int this_tile_start_point = blockIdx.x * blockDim.x;
int next_tile_start_point = (blockIdx.x + 1) * blockDim.x;
int N_start_point = i - halo_width; // the first

idx we should start to read from N

EC527 Spring 2022, Project Report

float Pvalue = 0;
/* Go through each item in mask. If the corresponding item

needed from input array is in ghost cell, then we will read it from
global memory, otherwise, we will read it from shared memory! */

for (int j = 0; j < mask_width; j++){
int N_index = N_start_point + j; // the

corresponding idx of M[j] for N[N_index]
// Check the boundary
if (N_index >= 0 && N_index < N_rowlen){

// Decide whether should read from global memory or
shared memory?

int reading_from_s_array = ((N_index >=
this_tile_start_point) && (N_index < next_tile_start_point));

if (reading_from_s_array){
Pvalue += s_array[threadIdx.x - halo_width + j]

* d_mask_constant[j];
}else {

Pvalue += N[N_index] * d_mask_constant[j];
}

}
}
P[i] = Pvalue;

}

Result of Strategy 1 vs Strategy 2:

rowlen CPU(msec） GPU(msec) Speedup

1000 0.00205 0.4489 0.0045667

100,000 1.604 0.8683 1.8472878

10,000,000 148.706 51.3228 2.8974647

1,000,000,000 20518.374 6361.1801 3.2255609

Table 4: Benchmark Performance for Code 4(constant memory)

rowlen CPU(msec） GPU(msec) Speedup

1000 0.01804 0.463392 0.0389303

100,000 2.4873 1.288352 1.9306059

10,000,000 116.99418 36.04224 3.2460297

EC527 Spring 2022, Project Report

1,000,000,000 9834.4849 3451.381348 2.8494344

Table 5: Benchmark Performance for Code 5(constant memory)

Note: The result in Table 2-4 and Table 5 were ran twice at different time in SCC, but same GPU
(Tesla V100-SXM2) and CPU(Intel(R) Xeon(R) Gold 6242 CPU @ 2.80GHz) architecture were
used.

Conclusion:
By splitting the works into numerous CUDA threads, we did make great improvements (3.5x on
an array with length 10,000,000 and 3.05x on 1,000,000,000) compared with the performance of
the CPU baseline. In addition, we tried putting mask array into constant memory to reduce the
memory access latency, and this help us to improve the performance by 2-3% but not
dramatically. In the end, we tried to apply the tiled algorithm by managing all threads within a
block to load the corresponding input elements collaboratively. There are two strategies were
conducted to implement the tiled algorithm for 1D CNNs. However, the result is not as great as
we expected. I think the main reason for that might be related to the overhead for transferring
data from input array in global memory to shared memory and the waiting time for
synchronization of all threads before performing the computation for the output array.

Note: All the performances evaluated above have been verified with the correct results that
were produced from the CPU, and they are all being computed correctly. All the codes are
stored in the file test_1d_conv.cu, and can be compiled easily by calling make.

Compilation Instruction:
By running the following command to compile the CUDA file:
nvcc -g -G -O1 -pg test_1d_conv.cu -o test_1d_conv

Note: -g is for debugging, and -O1 is for optimization, and -pg allows us to use Linux command
gprof, a program profiling utility, with the command, “gprof ./test_1d_conv gmon.out >
analysis.txt”

And then type the following command to run the program (Arguments are optional):
./test_1d_conv_no_padding [N_ARR_LEN] [NUM_THREADS_PER_BLOCK]
[task_id]

● argv[0]: task_id, which task to run (cuda_conv_1D_single_block - 1,
cuda_conv_1D_multi_block - 2, multi_block_with_mask_in_constant_memory - 3, tiled
algorithm with Strategy 1 - 4, tiled algorithm with strategy 2 - 5)

● argv[1]: N_ARR_LEN, length of input array N, with 1024 as default
● argv[2]: NUM_THREADS_PER_BLOCK, number of threads per block, with 16 as default.

(It’s better to use a number that is multiple of NUM_THREADS_PER_BLOCK, so we
won’t see many unmatched errors for the last block)

EC527 Spring 2022, Project Report

5. Reference
[1] Lawrence, Steve, et al. "Face recognition: A convolutional neural-network approach."
IEEE transactions on neural networks 8.1 (1997): 98-113.
[2] Li, Zhiyuan, Yi Zhang, and Sanjeev Arora. "Why are convolutional nets more
sample-efficient than fully-connected nets?." arXiv preprint arXiv:2010.08515 (2020).
[3] Wikipedia. “Multilayer perceptron”. https://en.wikipedia.org/wiki/Multilayer_perceptron
[4] manoharmukku. “multilayer-perception-in-C”.
https://github.com/manoharmukku/multilayer-perceptron-in-c
[5] Wikipedia. https://en.wikipedia.org/wiki/Profiling_(computer_programming)
[6] “Introduction to Profiling”.
https://sourceware.org/binutils/docs/gprof/Introduction.html#Introduction
[7] Zuhair, A. and Hassani, H., 2021. Comparing the Accuracy of Deep Neural Networks
(DNN) and Convolutional Neural Network (CNN) in Music Genre Recognition (MGR):
Experiments on Kurdish Music. arXiv preprint arXiv:2111.11063.,
https://arxiv.org/pdf/2111.11063.pdf
[8] Courtesy: Kirk, David B., and W. Hwu Wen-Mei. Programming massively parallel
processors: a hands-on approach. Morgan kaufmann, 2016.

https://en.wikipedia.org/wiki/Multilayer_perceptron
https://github.com/manoharmukku/multilayer-perceptron-in-c
https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://sourceware.org/binutils/docs/gprof/Introduction.html#Introduction
https://arxiv.org/pdf/2111.11063.pdf

