EC527 CNN Optimization

Boston University Zhengqi Dong(M.S. RAS) Pingcheng Dong Yunlu Deng 05/01/2022

Boston University | College of Engineering

BOSTON UNIVERSITY

Problem overview: MLP(multi-layer perceptron)

BOSTON UNIVERSITY

max_iter:10,000 training_size: 1096 features: 4 classes: 1

Problem overview: MLP(multi-layer perceptron)

Courtesy: Implementation of Multi Layer Perceptron in C, https://github.com/manoharmukku/multilayer-perceptron-in-c

BOSTON

UNIVERSITY

Single Core CPU Optimization

Pingcheng Dong

Time analyzation

1. Flat profiler

69	index	% time	self	childre	en called	name
70						<spontaneous></spontaneous>
71	[1]	100.0	0.00	23.19		main [1]
72			0.06	23.11	1/1	<pre>mlp_trainer [2]</pre>
73			0.00	0.02	1/1	<pre>mlp_classifier [16]</pre>
74			0.00	0.00	2/2	read_csv [24]
75						
76			0.06	23.11	1/1	main [1]
77	[2]	99.9	0.06	23.11	1	mlp_trainer [2]
78			12.20	5.34	10960000/109600	000 back_propagation [3]
79			1.16	4.35	10960000/109600	000 forward_propagation [4]
80			0.06	0.00	10000/10000	<pre>randomly_shuffle [14]</pre>
81			0.00	0.00	1/1	initialize_weights [25]
82						
83			12.20	5.34	10960000/109600	000 mlp_trainer [2]
84	[3]	75.6	12.20	5.34	10960000	<pre>back_propagation [3]</pre>
85			4.75	0.59	43840000/438400	000 calculate_local_gradient [
86						
87			1.16	4.35	10960000/109600	000 mlp_trainer [2]
88	[4]	23.7	1.16	4.35	10960000	forward_propagation [4]
89			3.59	0.00	43840000/438400	000 mat_mul [6]
90			0.28	0.00	10960000/109600	000 relu [8]
91			0.20	0.00	10960000/109600	000 softmax [9]
92			0.19	0.00	10960000/109600	000 tan_h [10]
93			0.09	0.00	10960000/109600	000 sigmoid [13]
94						
95			4.75	0.59	43840000/438400	000 back_propagation [3]
96	[5]	23.0	4.75	0.59	43840000	calculate_local_gradient [5]
97			0.32	0.00	10960000/109600	000 d_relu [7]
98			0.14	0.00	10960000/109600	000 d_softmax [11]
99			0.12	0.00	10960000/109600	000 d_tanh [12]
100			0.02	0.00	10960000/109600	000 d_sigmoid [15]

2. Further analyzation: back_propagation.c

Based on the analyzation above, in order to get more detailed information, we insert several time record functions into this file, like:

clock_gettime(CLOCK_REALTIME, &time_start); for (i = 0; i < n_layers-1; i++) weight_correction[i] = (double**)calloc(layer_sizes[i]+1, sizeof(double*)); clock_gettime(CLOCK_REALTIME, &time_stop); time_stamp[0] = time_stamp[0] + interval(time_start, time_stop);

PS C:\Users\1 Training:	11\multilayer-	perceptron-in-(c> ./MLP 3 4,5,	5 softmax,relu	ı,tanh 1 sigmo	id 0.01 1000 di	ata/data_train.csv	1096 5	data/data_	test.csv	275 5
func0 0.252509	func1 2.130107	func2 0.255550	func3 0.511152	func4 0.059468	func5 0.396791	func6 0.529015	func7 0.812962				

for loops inside the back_propagation

```
/*----- Calculate weight corrections for all layers' weights -----*/
// Weight correction for the output layer
calculate_local_gradient(param, n_layers-1, n_layers, layer_sizes, layer_inputs, layer_outputs, expected_output, local_gradient);
for (i = 0; i < param->output_layer_size; i++)
    for (j = 0; j < layer_sizes[n_layers-2]+1; j++)
        weight_correction[n_layers-2][j][i] = (param->learning_rate) * local_gradient[n_layers-1][i] * layer_outputs[n_layers-2][j];
```

```
// Weight correction for the hidden layers
int k;
for (i = n_layers-2; i >= 1; i--) {
    calculate_local_gradient(param, i, n_layers, layer_sizes, layer_inputs, layer_outputs, expected_output, local_gradient);
```

```
for (j = 0; j < layer_sizes[i]; j++)
for (k = 0; k < layer_sizes[i-1]+1; k++)
weight_correction[i-1][k][j] = (param->learning_rate) * local_gradient[i][j] * layer_outputs[i-1][k];
```

```
/*----- Update the weights ------*/
for (i = 0; i < n_layers-1; i++) {
    for (j = 0; j < layer_sizes[i]+1; j++) {
        for (k = 0; k < layer_sizes[i+1]; k++) {
            param->weight[i][j][k] -= weight_correction[i][j][k];
        }
    }
}
```

ways to optimize

- 1. unrolling the for loops
- 2. use openmp

time difference before openmp the platform is i5-5250U 2.3GHz

size	origin	unrolling by 2	unrolling by 4	unrolling by 8
1000*1096	73.43245	69.768331	66.23826	67.23843
10000*1096	753.47324	745.29493	739.28194	740.12887

openmp

use openmp with unrolling the platform is i5 - 8279U 4 cores 8 threads

size	origin	unrolling by 2	unrolling by 4	unrolling by 8
1000*1096	75.04	73.0986	72.1875	73.1005
10000*1096	782.56	766	758.9855	765.6478

the openmp did not perform well inside the back_propagation function

Multi-Core CPU Optimization

Yunlu Deng

Introduction

Steps:

1. Analyse the code and choose the optimize part;

param->weight[i][j][k] -= weight_correction[i][j][k];

```
local_gradient[layer_no][i] = error * layer_derivatives[layer_no][i];
```

error += local_gradient[layer_no+1][j] * param->weight[layer_no][i][j];

```
break;
```

Result

	Origin_src	Pthread_4	Pthread_8	Pthread_1 6	OpenMP_3	OpenMP_ 4	OpenMP_5
1000*1096_Time(s)	7.53	2.48	1.64	1.65	2.88	2.4	1.98
10000*1096_Time(s)	75.04	24.96	20.34	17.77	26.59	23.46	21.08
100000*1096_Time(s)	758.56	249.49	183.97	188.49	295.87	283.51	287.03
1000*1096Optimize_rate(%)	100	303.62	459.14	456.36	261.45	313.75	380.30
10000*1096Optimize_rate(%)	100	300.64	368.92	422.28	282.21	319.86	355.97
100000*1096Optimize_rate(%)	100	304.04	412.32	402.44	256.38	267.56	264.27

Table Result of Optimization

Training:							
Pthread_training train time = 2.479414 Done.							
Classifyin	y:						
classifyin	 g test exampl	e 275 of	275				
Confusion r	atrix						
	predicted	Ø	predicted 1				
Actual Ø	163		112				
Actual 1	ø	Ø					
Accuracy: 1	50.27						

GPU Optimization

Zhengqi Dong

1D example

1D boundary case: "ghost cell"

calculation for P[3]

```
P[3] = N[1]*M[0] + N[2]*M[1] + N[3]*M[2] + N[4]*M[3] + N[5]*M[4]
= 2*3 + 3*4 + 4*5 + 5*4 + 6*3
= 76
```

Courtesy: Kirk, David B., and W. Hwu Wen-Mei. *Programming massively parallel processors: a hands-on approach*. Morgan kaufmann, 2016.

1D conv: CPU version(with same padding)

void conv 1D(float *N, float *M, float *P, int mask width, int

// Return directly, if threadIdx exceed the size of P

for (i = halo_width; i < N_rowlen-halo_width; i++){</pre>

Pvalue += N[i - halo width + j] * M[j];

int halo width = (mask width - 1) / 2;

for (int j = 0; j < mask_width; j++){

						,,	
input array N:	0	1	2	3	4	5	0
input mask M:	0.3	0.2	0.8				
output array P:	0	1.8	3.1	4.4	5.7	2.2	0
	P[0]	P[1]	P[2]	P[3]	P[4]	P[5]	P[6]

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

Assumption:

- Padding: same padding is used
- mask_width: odd number, e.g., mask_width = 3
- halo_cell = ceil(mask_width/2) = 1
- i in range [halo_width, N_rowlen 1 halo_width]

```
i=2: N[1]M[0]+N[2]M[1]+N[3]M[2]=3.1
```

i =1: N[0]*M[0]+N[1]*M[1]+N[2]*M[2]=1.8

N rowlen) {

int i; float Pvalue;

Pvalue = 0;

P[i] = Pvalue;

i=5: N[4]M[0]+N[5]M[1]+N[6]M[2]=2.2

1D conv: kernel function for single block (with same padding)

			thr	eadId	x.x			
global void conv_1D _single_block(float *N, float *M,		N[0]	N[1]	N[2]	N[3]	N[4]] N[5]	N[6]
float *P, int mask_width, int N_rowlen) { int i = threadIdx x: // For output array P	input array N:	0	1	2	3	4	5	0
int j; float Pvalue = 0;	input mask M:	0.3	0.2	0.8				
// Return directly, if threadIdx exceed the size of P			0.3	0.2	0.8			
int halo_width = (mask_width - 1) / 2; <mark>if (i < halo_width i > (N_rowlen - 1 - halo_width)) </mark>				0.3	0.2	0.8		
// 1 off for idx					0.3	0.2	0.8	
for (j = 0; j < mask_width; j++){ Pvalue += N[i - halo_width + j] * M[j];						0.3	0.2	0.8
} P[i] = Pvalue;	output array P:		2	2	\$	5	2	
}			3	3	3	4	\$	
		0	1.8	3.1	4.4	5.7	2.2	0
		P[0]	P[1]	P[2]	P[3]	P[4]	P[5]	P[6]

cuda_single_block_conv_1D<<< 1, N_ARR_LEN>>>(d_input, d_mask, d_output_data, MASK_WIDTH, N_ARR_LEN);

d_output_data, MASK_WIDTH, N_ARR_LEN);

			thr	eadId	x.x			
global void convolution 1D multi block(float *N, float		N[0]	N[1]	N[2]	N[3]	N[4]] N[5]	N[6]
*M, float *P, int mask_width, int N_rowlen) {	input array N:	0	1	2	3	4	5	0
float Pvalue = 0;	input mask M:	0.3	0.2	0.8				
<pre>// Return directly, if threadIdx exceed the size of P int halo_width = (mask_width - 1) / 2; // assume</pre>			0.3	0.2	0.8			
mask_width is odd number if (i < halo, width i > (N, rowlon, 1, halo, width)) roturn:				0.3	0.2	0.8		
// 1 off for idx					0.3	0.2	0.8	
for (int j = 0; j < mask_width; j++){ Pvalue += N[i - halo_width + j] * d_mask_constant[j];						0.3	0.2	0.8
} P[i] = Pvalue; }	output array P:		ANN	Aur	Anna.	ANN	And a	
dim3 dimGrid(ceil(P_ARR_LEN / NUM_THREADS_PER_BLOCK), 1)	;	0	18	3 1	4 4	57	22	0
cuda_conv_1D_multi_block<< <dimgrid, dimblock="">>>(d_input, d_</dimgrid,>	_mask,	P[0]	P[1]	P[2]	P[3]	P[4]	P[5]	P[6]

17

rowlen	CPU(msec)	GPU(msec)	Speedup
1000	0.0600	0.5790	0.1036
100,000	2.5730	1.3468	1.9105
10,000,000	119.0000	33.7104	3.5301
1,000,000,000	10150.0000	3327.1500	3.0507

Takeaway:

- 1. GPU will be faster if we're running on a larger array.
- 2. Floating-point arithmetic calculation to global memory is 1.0 in the kernel, which is pretty bad. --> Might need to consider leverage the shared_memory to close to peak performance.
- Length of input array(N) must be multiple of NUM_THREADS_PER_BLOCK. Otherwise, we might see many unmatched result, e.g., NUM_THREADS_PER_BLOCK=256, P_ARR_LEN=1000.

1D conv with putting mask_array into constant memory:

Observation:

- 1. First, the size of M array is typically small (often less than 100). That's MASK_WIDTH << N_ARR_LEN.
- 2. Second, the contents of M are not changed throughout the execution of the kernel.
- Third, all threads need to access the mask elements and in the same order, from M[0] to M[MASK_WIDTH -1].

Update:

- Place mask array(M) in constant memory; (FYI: you have 64 KB constant memory in total)
- Allocated and initialized mask in a mask h_mask array in the host memory, and transferred to device constant memory before launched kernel function:

cudaMemcpyToSymbol(d_mask h_mask, Mask_Width*sizeof(float));

rowlen	CPU(msec)	GPU(msec)	Speedup
1000	0.059	0.5508	0.107117
100,000	2.513	1.372	1.831633
10,000,000	124.8	34.298	3.638696
1,000,000,000	9804.3121	3110.98877	3.15151

Takeaway:

 With the use of constant memory and caching, we have effectively doubled the ratio of floating-point arithmetic to memory access to 2.

Strategy 1:

- Block size covers output tile
- Use multiple steps to load input tile

	Output	
	Input	
Step 1	Step 2	Step 3

Courtesy: Kirk, David B., and W. Hwu Wen-Mei. *Programming massively parallel processors: a hands-on approach*. Morgan kaufmann, 2016.

Block size covers output tile

Strategy 2:

- Load only "core" of input tile
- Access halo cells from global memory

Strategy 3:

- Block size covers input tile
- Load input tile in one step
- Turn off some threads when calculating output

BOSTON UNIVERSITY

Hyperparameter: N_ARR_LEN = 16, MASK_WIDTH=3, TILE_WIDTH = 4, N_ds[TILE_WIDTH]

Hyperparameter: N_ARR_LEN = 16, MASK_WIDTH=3, TILE_WIDTH = 4, N_ds[TILE_WIDTH]

Tiled 1D Conv on Strategy 2: code

```
BOSTON
UNIVERSITY
```

```
#define TILE WIDTH 4
 global void convolution 1D tiled cache kernel(float *N, float *P, int mask width, int
N rowlen) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
   shared float N ds[TILE WIDTH];
  N ds[threadIdx.x] = N[i];
   syncthreads();
  int halo width = (mask width - 1) / 2;
  if (i < halo width || i > (N rowlen - 1 - halo width)) return; // 1 off for idx
  int this tile start point = blockIdx.x * blockDim.x;
  int next tile start point = (blockIdx.x + 1) * blockDim.x;
  int N start point = i - halo width;
                                         // the first idx we should start to read from N
  float Pvalue = 0;
  for (int j = 0; j < mask width; j++) {
     int N index = N start point + j;
     if (N index >= 0 && N index < N rowlen) {
        int reading from N ds = ((N index >= this tile start point) && (N index <
next tile start point));
         if (reading from N ds) {
            Pvalue += N ds[threadIdx.x - halo width + j] * d mask constant[j];
         }else {
            Pvalue += N[N index] * d mask constant[j];
         }
   P[i] = Pvalue;
```

rowlen	CPU(msec)	GPU(msec)	Speedup
1000	0.01804	0.463392	0.0389303
100,000	2.4873	1.288352	1.9306059
10,000,000	116.99418	36.04224	3.2460297
1,000,000,000	9834.4849	3451.381348	2.8494344

Takeaway:

 The result is not as good as we expected, but we are stilling working on it...

Note:

All result computed previous set NUM_THREADS_PER_BLOCK=16

Conclusion

What we achieved so far:

- Multi Core:
 - Pthread optimization: 4.5x best improvement, the more thread, the better.
 - OpenMP optimization: 3.8x best improvement, the more thread, the better.
- GPU Optimization:
 - It's only useful when we have a large input array (>100,000 float).
 - By putting mask_array into constant memory does help to improve the performance
 - The performance with tiled algorithm did not perform very well as we expected, and we will spend more time to investigate it...

Future works:

- Multi Core
 - SIMD vectorization.
 - Combine with single core optimization to get better performance.
- GPU Optimization:
 - If time allowed, we will apply tiled algorithm on 2D conv operations as well

Thanks for listening! Any Question?

Reference:

- [1] Lawrence, Steve, et al. "Face recognition: A convolutional neural-network approach."IEEE transactions on neural networks 8.1 (1997): 98-113.
- [2] Li, Zhiyuan, Yi Zhang, and Sanjeev Arora. "Why are convolutional nets more
- sample-efficient than fully-connected nets?." arXiv preprint arXiv:2010.08515 (2020).
- [3] Wikipedia. "Multilayer perceptron". <u>https://en.wikipedia.org/wiki/Multilayer_perceptron</u>
- [4] manoharmukku. "multilayer-perception-in-C".
- https://github.com/manoharmukku/multilayer-perceptron-in-c
- [5] Wikipedia. <u>https://en.wikipedia.org/wiki/Profiling (computer programming)</u>
- [6] "Introduction to Profiling".

https://sourceware.org/binutils/docs/gprof/Introduction.html#Introduction

- [7] Zuhair, A. and Hassani, H., 2021. Comparing the Accuracy of Deep Neural Networks
- (DNN) and Convolutional Neural Network (CNN) in Music Genre Recognition (MGR):
- Experiments on Kurdish Music. arXiv preprint arXiv:2111.11063.,
- https://arxiv.org/pdf/2111.11063.pdf
- [8] Courtesy: Kirk, David B., and W. Hwu Wen-Mei. Programming massively parallel processors: a hands-on approach. Morgan kaufmann, 2016

Backup Slides

$N_rowlen = P_rowlen = 1024$

N_lenth, Mask_length, output_length, 1D conv time(msec)
 1024, 3, 1024, 0.01711
======> All CPU tests are done! Now, running GPU code!
======>Running taskid #: 5 on GPU!
1(1D single block) --> 2(1D multi-block) --> 3(1D mulit-block with mask in constant
memory) --> 4(tiled algo with Strategy 1) --> 5(tiled algo with Strategy 2(shared +
global memory))

GPU time: 1.947328 (msec) ZERO RESULT in 0: 0.0000 0.0000 -nan % ZERO RESULT in 1023: 0.0000 0.0000 -nan %

@ERROR: TEST FAILED: 2/1024 results (from GPU) are zero

N_rowlen = P_rowlen = 100,000

N_lenth, Mask_length, output_length, 1D conv time(msec)
100000, 3, 100000, 3.595
======> All CPU tests are done! Now, running GPU code!
=======>Running taskid #: 5 on GPU!
1(1D single block) --> 2(1D multi-block) --> 3(1D mulit-block with mask in constant
memory) --> 4(tiled algo with Strategy 1) --> 5(tiled algo with Strategy 2(shared +
global memory))

GPU time: 4.122752 (msec) ZERO RESULT in 0: 0.0000 0.0000 -nan % ZERO RESULT in 99999: 0.0000 0.0000 _-nan %

@ERROR: TEST FAILED: 2/100000 results (from GPU) are zero

$N_rowlen = P_rowlen = 10,000,000$

N_lenth, Mask_length, output_length, 1D conv time(msec)
10000000, 3, 10000000, 163.6
=======> All CPU tests are done! Now, running GPU code!
=======>Running taskid #: 5 on GPU!
1(1D single block) --> 2(1D multi-block) --> 3(1D mulit-block with mask in constant
memory) --> 4(tiled algo with Strategy 1) --> 5(tiled algo with Strategy 2(shared +
global memory))

GPU time: 147.237503 (msec) ZERO RESULT in 0: 0.0000 0.0000 -nan % ZERO RESULT in 9999999: 0.0000 0.0000 <u>-nan %</u>

@ERROR: TEST FAILED: 2/1000000 results (from GPU) are zero

Takeaway:

 Make sense when we have a very large array Hyperparameter: {NUM_THREADS_PER_BLOCK=16; MASK_WIDTH 3; TOL 0.05; }

N_rowlen = P_rowlen = 1024

N_lenth, Mask_length, output_length, 1D conv time(msec) 1024, 3, 1024, 0.0174 =====>> All CPU tests are done! Now, running GPU code! =====>Running taskid #: 2 on GPU! 1(1D single block) --> 2(1D multi-block) --> 3(1D mulit-block with mask in constant memory) --> 4(tiled algo with Strategy 1) --> 5(tiled algo with Strategy 2(shared + global memory))

GPU time: 1.543776 (msec) ZERO RESULT in 0: 0.0000 0.0000 -nan % ZERO RESULT in 1023: 0.0000 0.0000 -nan %

@ERROR: TEST FAILED: 2/1024 results (from GPU) are zero

N_rowlen = P_rowlen = 100,000

N_lenth, Mask_length, output_length, 1D conv time(msec)
100000, 3, 100000, 1.221
=====>> All CPU tests are done! Now, running GPU code!
=====>Running taskid #: 2 on GPU!
1(1D single block) --> 2(1D multi-block) --> 3(1D mulit-block with mask in constant
memory) --> 4(tiled algo with Strategy 1) --> 5(tiled algo with Strategy 2(shared +
global memory))

GPU time: 3.005472 (msec) ZERO RESULT in 0: 0.0000 0.0000 -nan % ZERO RESULT in 99999: 0.0000 0.0000 -nan %

@ERROR: TEST FAILED: 2/100000 results (from GPU) are zero

N_rowlen = P_rowlen = 10,000,000

N_lenth, Mask_length, output_length, 1D conv time(msec) 10000000, 3, 10000000, 148.8 =====>> All CPU tests are done! Now, running GPU code! ====>Running taskid #: 2 on GPU! 1(1D single block) --> 2(1D multi-block) --> 3(1D mulit-block with mask in constant memory) --> 4(tiled algo with Strategy 1) --> 5(tiled algo with Strategy 2(shared + global memory))

GPU time: 111.096252 (msec) ZERO RESULT in 0: 0.0000 0.0000 -nan % ZERO RESULT in 9999999: 0.0000 0.0000 -nan %

@ERROR: TEST FAILED: 2/10000000 results (from GPU) are zero

Takeaway:

- 1. GPU will be faster if we're running on a larger array.
- Floating-point arithmetic calculation to global memory is 1.0 in the kernel, which is pretty bad. --> Might need to consider leverage the shared_memory to close to peak performance.
- Length of input array(N) must be multiple of NUM_THREADS_PER_BLOCK. Otherwise, we might see many unmatched result, e.g., NUM_THREADS_PER_BLOCK=256, P_ARR_LEN=1000.

Hyperparameter: {NUM_THREADS_PER_BLOCK=16; MASK_WIDTH 3; TOL 0.05; }

N_rowlen = P_rowlen = 1024

N_lenth, Mask_length, output_length, 1D conv time(msec)
 1024, 3, 1024, 0.01769
=====> All CPU tests are done! Now, running GPU code!
=====>Running taskid #: 3 on GPU!
1(1D single block) --> 2(1D multi-block) --> 3(1D mulit-block with mask in constant
memory) --> 4(tiled algo with Strategy 1) --> 5(tiled algo with Strategy 2(shared +
global memory))

GPU time: 3.052384 (msec) ZERO RESULT in 0: 0.0000 0.0000 -nan % ZERO RESULT in 1023: 0.0000 0.0000 -nan %

@ERROR: TEST FAILED: 2/1024 results (from GPU) are zero

N_rowlen = P_rowlen = 100,000

N_lenth, Mask_length, output_length, 1D conv time(msec)
100000, 3, 100000, 1.923
=====>> All CPU tests are done! Now, running GPU code!
=====>Running taskid #: 3 on GPU!
1(1D single block) --> 2(1D multi-block) --> 3(1D mulit-block with mask in constant
memory) --> 4(tiled algo with Strategy 1) --> 5(tiled algo with Strategy 2(shared +
global memory))

GPU time: 2.552192 (msec) ZERO RESULT in 0: 0.0000 0.0000 -nan % ZERO RESULT in 99999: <u>0.0000 0.0000 -nan %</u>

@ERROR: TEST FAILED: 2/100000 results (from GPU) are zero

N_rowlen = P_rowlen = 10,000,000

```
N_lenth, Mask_length, output_length, 1D conv time(msec)
10000000, 3, 10000000, 139.5
=====>> All CPU tests are done! Now, running GPU code!
=====>Running taskid #: 3 on GPU!
1(1D single block) --> 2(1D multi-block) --> 3(1D mulit-block with mask in constant
memory) --> 4(tiled algo with Strategy 1) --> 5(tiled algo with Strategy 2(shared +
global memory))
```

GPU time: 104.104767 (msec) ZERO RESULT in 0: 0.0000 0.0000 -nan % ZERO RESULT in 99999999: 0.0000 0.0000 -nan %

@ERROR: TEST FAILED: 2/10000000 results (from GPU) are zero

Takeaway:

 With the use of constant memory and caching, we have effectively doubled the ratio of floating-point arithmetic to memory access to 2.

BOSTON UNIVERSITY

Hyperparameter: N_ARR_LEN = 16, MASK_WIDTH=3, TILE_SIZE = 4, N_ds[6]

Block1

Courtesy: Kirk, David B., and W. Hwu Wen-Mei. *Programming massively parallel processors: a hands-on approach*. Morgan kaufmann, 2016.

(My example) Strategy 1: All in one (with no padding)

Note: N_length must be multiple of TILE_SIZE, e.g., N_length = 16, TILE_SIZE=4