
Boston University | College of Engineering

EC527 CNN Optimization
Boston University

Zhengqi Dong(M.S. RAS)

Pingcheng Dong

Yunlu Deng

05/01/2022

Background

Problem overview: MLP(multi-layer perceptron)

3
Courtesy: Implementation of Multi Layer Perceptron in C, https://github.com/manoharmukku/multilayer-perceptron-in-c

https://github.com/manoharmukku/multilayer-perceptron-in-c

Problem overview: MLP(multi-layer perceptron)

4
Courtesy: Implementation of Multi Layer Perceptron in C, https://github.com/manoharmukku/multilayer-perceptron-in-c

https://github.com/manoharmukku/multilayer-perceptron-in-c

Single Core CPU Optimization
Pingcheng Dong

Time analyzation

6

2. Further analyzation: back_propagation.c

Based on the analyzation above, in order to get more detailed

information, we insert several time record functions into this file,

like:

1. Flat profiler

7

for loops inside the back_propagation

ways to optimize

1. unrolling the for loops

2. use openmp

unrolling for loops

8

size origin unrolling by 2 unrolling by 4 unrolling by 8

1000*1096 73.43245 69.768331 66.23826 67.23843

10000*1096 753.47324 745.29493 739.28194 740.12887

time difference before openmp

the platform is i5-5250U 2.3GHz

openmp

9

size origin unrolling by 2 unrolling by 4 unrolling by 8

1000*1096 75.04 73.0986 72.1875 73.1005

10000*1096 782.56 766 758.9855 765.6478

use openmp with unrolling

the platform is i5 - 8279U 4 cores 8 threads

the openmp did not perform well inside the back_propagation function

Multi-Core CPU Optimization
Yunlu Deng

Introduction

11

Steps:

1. Analyse the code and choose the optimize part;

2. Make sure about dependence;

function

mlp_trainer

function

back_propagation

Result

12

Origin_src Pthread_4 Pthread_8 Pthread_1

6

OpenMP_3 OpenMP_

4

OpenMP_5

1000*1096_Time(s) 7.53 2.48 1.64 1.65 2.88 2.4 1.98

10000*1096_Time(s) 75.04 24.96 20.34 17.77 26.59 23.46 21.08

100000*1096_Time(s) 758.56 249.49 183.97 188.49 295.87 283.51 287.03

1000*1096Optimize_rate(%) 100 303.62 459.14 456.36 261.45 313.75 380.30

10000*1096Optimize_rate(%) 100 300.64 368.92 422.28 282.21 319.86 355.97

100000*1096Optimize_rate(%) 100 304.04 412.32 402.44 256.38 267.56 264.27

Table Result of Optimization

GPU Optimization
Zhengqi Dong

1D Conv General Idea:

14

Courtesy: Kirk, David B., and W. Hwu Wen-Mei. Programming massively parallel processors: a hands-on approach.

Morgan kaufmann, 2016.

1D conv: CPU version(with same padding)

15

1D conv: kernel function for single block (with same padding)

16

1D conv: kernel function for multi block (with same padding)

17

1D conv multi-block Result (tested on SCC Tesla V100):

18

1D conv with putting mask_array into constant memory:

19

1D conv with putting mask_array into constant memory:

20

Tiled 1D Convolution Basic Idea:

21

Tiled 1D Conv on Strategy 2: General Case

22

Tiled 1D Conv on Strategy 2: Boundary Case 1

23

Tiled 1D Conv on Strategy 2: code

24

Tiled 1D Conv on Strategy 2: Result

25

Conclusion

26

What we achieved so far:

● Multi Core：
○ Pthread optimization: 4.5x best improvement, the more thread, the better.

○ OpenMP optimization: 3.8x best improvement, the more thread, the better.

● GPU Optimization:

○ It’s only useful when we have a large input array (>100,000 float).

○ By putting mask_array into constant memory does help to improve the performance

○ The performance with tiled algorithm did not perform very well as we expected, and we will spend more time to investigate it...

Future works:

● Multi Core

○ SIMD vectorization.

○ Combine with single core optimization to get better performance.

● GPU Optimization:

○ If time allowed, we will apply tiled algorithm on 2D conv operations as well

27

Thanks for listening!

Any Question?

Reference:

[1] Lawrence, Steve, et al. "Face recognition: A convolutional neural-network approach."

IEEE transactions on neural networks 8.1 (1997): 98-113.

[2] Li, Zhiyuan, Yi Zhang, and Sanjeev Arora. "Why are convolutional nets more

sample-efficient than fully-connected nets?." arXiv preprint arXiv:2010.08515 (2020).

[3] Wikipedia. “Multilayer perceptron”. https://en.wikipedia.org/wiki/Multilayer_perceptron

[4] manoharmukku. “multilayer-perception-in-C”.

https://github.com/manoharmukku/multilayer-perceptron-in-c

[5] Wikipedia. https://en.wikipedia.org/wiki/Profiling_(computer_programming)

[6] “Introduction to Profiling”.

https://sourceware.org/binutils/docs/gprof/Introduction.html#Introduction

[7] Zuhair, A. and Hassani, H., 2021. Comparing the Accuracy of Deep Neural Networks

(DNN) and Convolutional Neural Network (CNN) in Music Genre Recognition (MGR):

Experiments on Kurdish Music. arXiv preprint arXiv:2111.11063.,

https://arxiv.org/pdf/2111.11063.pdf

[8] Courtesy: Kirk, David B., and W. Hwu Wen-Mei. Programming massively parallel

processors: a hands-on approach. Morgan kaufmann, 2016

28

https://en.wikipedia.org/wiki/Multilayer_perceptron
https://github.com/manoharmukku/multilayer-perceptron-in-c
https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://sourceware.org/binutils/docs/gprof/Introduction.html#Introduction
https://arxiv.org/pdf/2111.11063.pdf

29

30

Backup Slides

Tiled 1D conv on with Strategy 2 result (tested on my PC RTX2070, tasked=5):

Takeaway:

• Make sense when we have a very large

array

N_rowlen = P_rowlen = 1024

N_rowlen = P_rowlen = 100,000

N_rowlen = P_rowlen = 10,000,000

1D conv multi-block Result (tested on my PC RTX2070, tasked=2):

Hyperparameter: {NUM_THREADS_PER_BLOCK=16;
MASK_WIDTH 3; TOL 0.05; }

N_rowlen = P_rowlen = 1024

Takeaway:
1. GPU will be faster if we’re running on a larger array.
2. Floating-point arithmetic calculation to global memory is 1.0 in

the kernel, which is pretty bad. --> Might need to consider
leverage the shared_memory to close to peak performance.

3. Length of input array(N) must be multiple of
NUM_THREADS_PER_BLOCK. Otherwise, we might see many
unmatched result, e.g., NUM_THREADS_PER_BLOCK=256,
P_ARR_LEN=1000.

N_rowlen = P_rowlen = 100,000

N_rowlen = P_rowlen = 10,000,000

Takeaway:
• With the use of constant memory and

caching, we have effectively doubled the ratio
of floating-point arithmetic to memory access
to 2.

1D conv multi-block and mask in constant memory result (tested on my PC RTX2070, taskid=3) :

Hyperparameter: {NUM_THREADS_PER_BLOCK=16;
MASK_WIDTH 3; TOL 0.05; }

N_rowlen = P_rowlen = 1024

N_rowlen = P_rowlen = 100,000

N_rowlen = P_rowlen = 10,000,000

(My example) Strategy 1: Loading the left halo (with no padding)

(My example) Strategy 1: All in one (with no padding)

