
Deep Learning Spring 2022, Project Report

Automatic Waste Detection on ZeroWaste
Zhengqi Dong, Zeyu Gu,Tao Zhang, Yufan Lin

{dong760, zgu, mtao, eric1025}@bu.edu

1. Task
Currently the issue of waste detection has drawn the
public’s attention. Due to a recent report by The World
Bank, the waste production is predicted to be 3.4 billion
tons by 2050 which would become a disaster [1]. How
to deal with waste will be an inevitable problem. So,
effectively and accurately classifying waste has
become a solution. In this project, our group mainly
focuses on the detection of waste. We will use the Zero
Waste dataset, which is the largest public waste
detection dataset, as a foundation to start our
implementation. We aim to use computer vision and
deep learning techniques to build a more efficient and
accurate model for detection.

2. Related Work
The task of identifying different types of waste in
images boils down to the task of object detection. This
section presents some state-of-the-art architecture
used in object detection[2, 3] as well as some publicly
available waste datasets.

2.1 SOTA architectures
There have been several successful architectures
proposed during the last ten years that have achieved
state-of-the-art results in object detection. Here, we
discuss two of the state-of-the-art architectures for
object detection.

YOLOv4 YOLOv4[13] is a one-stage object detector
that builds on previous YOLO models. It uses YOLOv3
as its head, SPP[19] and PANet[20] as the neck, and
CSPDarknet53 as the backbone. The main
contribution of YOLOv4 is that the authors introduced
vision techniques called Bag of Freebies(BoF) and Bag
of Specials(BoS) and how the combination of these
techniques added to the network can create accurate
and efficient object detectors

Scaled YOLOv4 Scaled YOLOv4 [3] is a redesign of
the YOLOv4 network based on the CSP [5] approach
and is able to be scaled both up and down to
accommodate both small and large networks while
maintaining optimal speed and accuracy. The CSP is a
new way to architect the CNN that can save

computations for various CNN networks. The authors
of Scaled YOLOv4 propose a network scaling
approach that can modify not only the depth, width,
resolution, but also the structure of the network [3].

YOLOR YOLOR[21] stands for “You Only Learn One
Representation”. It is an object detection model, but it
is not a continuation of the YOLOv1-v4 series. The
design of YoloR was inspired by the way that
knowledge was being processed in the human brain,
where we not only can understand the physical world
based on explicit knowledge (aka normal or conscious
learning, e.g., data we perceived via vision, hearing,
tactile) but also on implicit knowledge (aka
subconsciousness learning, e.g., past experiences).
Based on this idea, the YoloR paper described a new
approach to combine these two pieces of knowledge to
form an effective unified CNN network that can perform
various tasks simultaneously, such as kernel space
alignment, prediction refinement, and multi-task
learning. Specifically, in the YoloR model, explicit
knowledge refers to direct knowledge based on
observation, such as input data, annotated labels, or
rough features being extracted in the shallow neural
network, and implicit knowledge refers to knowledge
that does not directly correspond to observation, such
as those abstract high–level features that were
extracted from deep layers.[27,28]

Dynamic R-CNN Dynamic R-CNN[17] focuses on
adjusting the second stage classifier and regressor to
fit the distribution change of proposals. It contains two
main parts, the dynamic label assignment and dynamic
smooth L1 loss. Compared to Faster R-CNN, these
two methods will improve the overall performance of
Dynamic R-CNN.[17]
In [7], Bashkirova et al. showed that object detection
methods especially struggled with labeling small
objects correctly, so this is one aspect we will pay
attention to in our project.

2.2 Waste Detection Datasets
As automatic waste detection attracted more attention,
several waste datasets [15, 16] have been created for

mailto:mtao@bu.edu
mailto:mtao@bu.edu

Deep Learning Spring 2022, Project Report

researchers to develop a better methodology to tackle
the problem.

TACO TACO[15] is an open image dataset of waste in
the wild. The TACO dataset currently contains 1500
annotated images with 60 classes[15]. The annotations
are provided in the well-known COCO format. TACO is
often used to evaluate the performance of object
detection models. One downside of the TACO dataset
is that it may contain some user-induced errors and
bias due to the crowd-sourcing nature of the dataset.

ReSort-IT ReSort-IT[16] is one of the more recent
datasets created for the purpose of developing better
object detection models based on deep learning. It
contains 16000 synthetic images. The dataset is
publicly available on Github. One downside of this
dataset is its synthetic nature, which may differ a lot
from real-world waste site scenarios.
We discuss our choice of the dataset in section 4.

3. Approach
The goal of object detection is to detect the classes of
objects and their location information in the given
image. In the ZeroWaste[7] paper, the authors have
applied three detection models, RetinaNet,
MaskRCNN, and TridentNet, to show the feasibility of
this approach. The best result was shown in the
RetinaNet model with AP=24.2, AP50=36.3,
AP75=26.6, AP_s=4.8, AP_m=10.7, and AP_l=26.1,
which will be used as the baseline model for
performance comparison in our project.
Our work will be extended based on the ZeroWaste
project and push the limit to the next level. Our
approaches will first mainly focus on Object Detection.
After achieving a desirable accuracy and detecting
speed on ZeroWaste-f, the fully-annotated dataset,
we will then consider other techniques or approaches
to further improve the performance, which potentially
can make the training more efficient and scalable to
the real-world image dataset, such as exploring an
advanced model in image segmentation, solving the
long-tailed problem, improving accuracy on small
object detection, and laborious process of data
collection and annotation.
In order to achieve this goal, there were several tasks
that we planned to implement:

1. Test and determine which is the best
one-stage object detection model for our
project, by leveraging the trade-off between
accuracy and speed amount three models:

YOLOv4 [12], scaled YOLOv4 [13], and YoloR
[14].

2. Implement and test the two-stage object
detection model Dynamic R-CNN based on the
dataset [17].

3. Data collection: What is the accuracy we can
get from those models with different
throughputs 15 fps, 30 fps, 45 fps, and 60 fps?
Report the test/val data size, AP, AP50, AP75,
AP_S AP_M, and AP_L on both validation and
testing datasets (Read here to learn more
about the evaluation metrics, COCO
Evaluation Metrics, A Comparative Analysis of
Object Detection Metrics with a Companion
Open-Source Toolkit, Object Detection Metrics
With Worked Example)

4. Compare the result we collected from a
one-stage object detection model with a
two-stage model Dynamic R-CNN, and
determine which one is more suitable for our
project?

In addition to the basic tasks described above, we also
explored different techniques that could potentially
improve the performance of the base models. We
separate the discussion on optimization techniques
used on YOLO models and Dynamic R-CNN.

3.1 Implementation of YOLO models
We trained our selected YOLO models (YOLOv4 and
YOLOR) based on WongKinYiu’s PyTorch
implementation. We provided the link to these
implementations in our repo readme as well as in the
reference section of this report. These PyTorch
implementations are close mimics of the original
Darknet framework, which are highly customizable,
allowing us to change the network structure and
training options. Since the implementation was
originally designed to work on the COCO dataset, we
have made several modifications for it to work on our
customized dataset. We have incorporated our forked
version of the original implementation in our repo. After
configuring the model, we put our focus on exploring
some of the optimization techniques first proposed in
the YOLOv4 paper.

3.1.1 Optimization Techniques on YOLO models
The YOLOv4 paper proposed two sets of techniques
that can be used to improve the model performance.
The first set of techniques is called the “bag of
freebies”. These are techniques that increase the
accuracy of object detection but do not increase the
inference cost (e.g. latency in the inference step). Most

https://cocodataset.org/#detection-eval
https://cocodataset.org/#detection-eval
https://www.mdpi.com/2079-9292/10/3/279
https://www.mdpi.com/2079-9292/10/3/279
https://www.mdpi.com/2079-9292/10/3/279
https://towardsdatascience.com/on-object-detection-metrics-with-worked-example-216f173ed31e
https://towardsdatascience.com/on-object-detection-metrics-with-worked-example-216f173ed31e
https://github.com/Boston-University-Projects/EC523_DL_CV_Project

Deep Learning Spring 2022, Project Report

of these methods make improvements in the data
augmentation or data management phase of the
training pipeline. The other set of techniques is called
the “bag of specials”. These are often plugin modules
or post-processing methods that only increase the
inference cost by a small amount but can significantly
improve the accuracy of object detection. They often
enhance certain attributes in a model, such as
receptive field, or strengthening feature integration
capability. We mainly put our focus on the “set of
freebies” techniques as they are more manageable to
implement. We list the techniques we explored below:
Photometric Distortion: Changing the brightness,
contrast, saturation and noise in an image to generate
more varieties of the same image. We only augmented
the hsv colorspace of the images.
Geometric Distortion: This augmentation technique
includes random scaling, cropping, flipping, and
rotating.
The two techniques described above were mainly used
for generating more training data as we only have
~3000 images in the training dataset. Besides
increasing the number of training images, these
techniques can also have some effects on improving
model performance. Image scaling is helpful in
increasing the accuracy of small object detection.
Image rotation and augmenting colorspace also
prevent the model from depending too much on the
orientation or the pixel pattern of the image during the
“learning” process.
Mosaic: Mosaic[13] combines 4 training images into
one in certain ratios. This is a new data augmentation
technique proposed in the YOLOv4 paper. By
combining 4 images together, we allow the model to
detect objects out of their normal contexts. It also
allows the model to learn how to identify objects at a
smaller scale. Also, since batch normalization
calculates activation statistics from 4 different images
on each layer, this significantly reduces the need for a
large mini-batch size.
Mixup: Mixup[22] simply averages out two images and
their corresponding labels according to a specific ratio
and forms new data. This provides continuous samples
of data in between the different classes, which
intuitively expands the distribution of the training set
and thus makes the network more robust in the testing
phase.
Dropblock regularization: DropBlock[23] can be
thought of as a form of structured dropout. In
Dropblock, a block section of the pixels in the image is
dropped out, whereas in dropout, individual pixels are
dropped out randomly. The problem with dropout is

that it may not work well on convolutional layers. In
convolutional layers, neighboring pixels are highly
correlated, so even if some of the pixels are dropped,
the spatial information may still remain detectable.
Instead of dropping individual pixels, we drop a section
of block_size x block_size pixels from the image in
dropblock. This technique forces the network to learn
features that it may not otherwise rely upon. Figure 1
shows the difference between dropout and Dropblock.
Spatial Dropout regularization: Spatial dropout[24] is
another dropout technique that is designed for
convolutional layers. Spatial dropout extends the
dropout value across the entire feature map. The
adjacent pixels in a dropped out feature map are either
all 0 or all being active. Figure 2 shows the difference
between dropout and spatial dropout.
In our experiments, we injected the dropblock and
spatial dropout module in the FPN block, following the
approach mentioned in the PP-YOLO[25] paper.
The techniques described in this section did improve
the model performance, but only to a limited extent.
Due to time constraints, we weren’t able to test the
boost in performance resulting from each of these
techniques. Instead, we tested the data augmentation
techniques as a whole and the regularization
techniques individually. The result is shown in table 1.

Figure 1. image in the middle is dropout, the image on
the right is dropblock

Figure 2. The image on the left is dropout, the image
on the right is spatial dropout

Methods mAP@.5 mAP@.5:.95

YOLOv4 with
no
augmentation

0.27 0.164

YOLOv4 with
augmentations

0.406 0.26

Deep Learning Spring 2022, Project Report

YOLOv4 with
augmentation
and dropblock

0.454 0.302

YOLOv4 with
augmentation
and spatial
dropout

0.44 0.292

Table 1. Comparisons between techniques

3.2 Implementation of Dynamic R-CNN
We trained and tested the two-stage object detection
model Dynamic R-CNN on SCC with one GPU node.
The model is integrated into MMDetection, which is an
object detection toolbox that contains a rich set of
object detection and instance segmentation methods
as well as related components and modules [18]. The
full details of training Dynamic R-CNN is shown in our
repo. To implement this two-stage detection model, we
basically set up the environment on the SCC to
download the toolbox and tested the model within
MMdetection.

3.2.1 Optimization Techniques on Dynamic R-CNN
models
In order to enhance the performance of Dynamic
R-CNN, we used simpler techniques including utilizing
a pre-trained model and adjusting the regularization
amount through the parameter called the weight decay
for the training.
Pre-trained model: we used a pre-trained Dynamic
R-CNN model based upon the COCO dataset instead
of the one from scratch. The pre-trained model is
included in the MMDetection toolbox package [18]. As
our dataset is in COCO dataset format, this
optimization technique has been proved to improve the
performance in detection.
Weight Decay: Having a model with complex weights
will benefit the training process. But the degree of
complexity needs to be controlled in order to achieve
optimal accuracy. Weight decay, a coefficient in front of
the L2 regularization, is hence utilized to penalize the
complexity.

4. Datasets
Our project, following Professor Kate’s group’s work on
automated waste recycling, will be based on the
industrial-grade waste detection and segmentation
dataset named ZeroWaste, specifically the fully-labeled
one, ZeroWaste-f.

The original ZeroWaste-f dataset was split into
training, validation, and test sets and stored in the
widely used MS COCO format for object detection and
segmentation using the open-source Voxel51 toolkit
[7]. There are 4503 labeled images in total, and four
major classes, including cardboard, soft plastic, rigid
plastic, and metal, more specifically, 3002 for training,
572 for validation, and 929 for testing.

The Dynamic R-CNN model is trained on the original
dataset as it is. In the YOLO models, however, due to
different format requirements, all data used for training
YOLO models have been reorganized and processed.
Specifically, we split them into training, validation, and
testing in a 70/20/10 ratio respectively, so 3148 in
training, 900 in validation, and 448 in testing images.

The original images have sizes of 1920x1080. With a
small data pre-processing, the whole dataset has been
resized to 640x640 to speed up the training process
and reduce the memory cost.

5. Evaluation Metrics
At the end of the output layer, we have a confidence
score ranging between 0 and 1 for each object, but it
does not tell us which class it belongs to. To convert
those scores into a class label, a threshold is used,
e.g., if threshold=0.5, then only scores equal to or
above the threshold will be classified as a
corresponding class. Two evaluation criteria that are
often used to evaluate the performance: 1) precision
tells us how accurate or reliable our prediction is, and
2) recall tells us how good our model is in finding the
positives among all predictions (The mathematical
formula is shown in Figure 3 below).

Figure 3: Confusion matrix [33]
According to the Neyman-Pearson lemma [34], two
types of errors (false positive and false negative) that
exist in these two criteria (precision and recall) are not
always equal. For balancing the trade-off between
these two criteria, a mean average precision is used to
summarize the precision-recall curve across all K

https://github.com/Boston-University-Projects/EC523_DL_CV_Project/blob/main/src/notebooks/waste_detection_D-RCNN.ipynb

Deep Learning Spring 2022, Project Report

classes into a single value, and the specific formula of
average precision is shown below:

𝐴𝑃 =
𝑖=1

𝑛−1

∑ (𝑟
𝑖+1

+ 𝑟
𝑖
) 𝑝

𝑖𝑛𝑡𝑒𝑟𝑝
(𝑟

𝑖+1
）

Where, is the interpolated precision at recall𝑝
𝑖𝑛𝑡𝑒𝑟𝑝

level , and is the recall level at which the precision𝑟
𝑖

𝑟
𝑖

was interpolated, and the formula of mean average
precision over K classes is defined below:

m𝐴𝑃 = 𝑖=1

𝐾

∑ 𝐴𝑃
𝑖

𝐾

In Pascal VOC2008 [31], an 11-point interpolated
average precision was used. However, in 2015, a more
precise 101-point interpolated average precision was
used in the COCO dataset evaluation metrics [32].

In object detection, except for the evaluation of
prediction, we also need to evaluate the performance
of the bounding box for each object and understand
how tightly they are fitted to the ground truth
annotation. Therefore, a quantitative measurement,
IoU(Intersection of Union), is used to evaluate the
percentage of the intersection region of predicted and
ground-truth bounding boxes over their union
area.Throughout many years of object detection
competition, different variations of mAP were created
based on the strictness of their evaluation. Based on
the definition of the COCO dataset [32], the three
variations of mAP that were calculated based on
different IoU(Intersection over Union) thresholds and
were used in evaluating the performance of our project
shown in Table 5 are:

1) AP.5..0.95: It’s the mAP averaged over 10 IoU
thresholds (i.e., .5, .55, .6, …, .95), aka
mAPIoU@[.5: .05: .95], and is used as the primary
COCO challenge metric.

2) AP50: mAP at IoU=.50 and is identical to the
PASCAL VOC metric.

3) AP75: mAP at IoU=.75, another strict metric.
In addition to different IoU thresholds, three variants
were used based on the size of detected objects:

1) APS: mAP for small objects that covers area
less than 32x32

2) APM: mAP for medium objects that covers area
greater than 32x32 but less than 96x96

3) APL: mAP for large objects that covers area
greater than 96x96

Note: COCO evaluation metrics make no distinction
between AP and mAP[32], and this also applies to our
project (alike AR and mAR).

6. Result

In this section, we show our experimental results after
training each model on the ZeroWaste dataset. In our
experiments, we trained each model for 300 epochs to
produce comparable results. We weren’t able to test
out Scaled-YOLOv4 as planned due to time constraints
and some technical difficulties, so we excluded
Scaled-YOLOv4 in our discussion and result below.

6.1 Dynamic R-CNN Testing Result
In our experiment, we used the Dynamic R-CNN
network which is based on Faster R-CNN architecture,
utilizing dynamic ROI head as ROI head and
SmoothL1 Loss as loss function. Also, we used
ResNet-50-FPN as the backbone.

We trained the model using different numbers of
weight decay over 300 epochs to see what the optimal
quantity is. Table 2 shows the validation results under
different regularization coefficients. The optimal weight
decay shown is hence 0.0001.

Weight Decays Maximum mAP during
validation

0.00005 0.214

0.0001 0.241

0.0002 0.212

0.0006 0.202

0.001 0.198

Table 2: Validation result of the model over different
weight decays

In Table 3, it shows the average precision of the test
result before and after using the two optimization
techniques including utilizing a pre-trained model and
adjusting the weight decay parameter.

Dynamic
R-CNN

From Scratch Pretrained with
optimal weight
decay of 0.0001

AP@[0.5:0.95] 27.1 30.8

AP50 40.3 42.6

AP75 30.3 33.5

Table 3: Result of two models before and after the
optimization for 300 epochs

Deep Learning Spring 2022, Project Report

We can see that the pretrained model and optimized
optimal weight decay in Table 3 show the average
precision has been increased, which illustrates the
effectiveness of these techniques.

6.2 One-Stage Detector Testing Result
One-stage object detection models skip the process of
region proposal and run the detection model directly
over a dense sampling of location， and NMS
(non-max suppression) is used to produce the
bounding box with the highest IOU for each object. In
our project, we applied two different one-stage object
detection models, including YOLOv4 and YOLOR. For
YOLOv4, we used the configuration based on the
CSPDarknet53 backbone with leaky relu activation
function in convolutional layers. For the network neck,
the architecture used CSPSPP mentioned in [12],
FPN[26], and PAN[20]. The detection head is
composed of YOLO layers. Our best performing
YOLOv4 model was the one trained on the augmented
data and with a Spatial dropout module injected in the
FPN blocks. The configuration file for this model is the
“yolov4-custom-2.cfg”, which is modified based on
“yolov4-csp-x-leaky.cfg”(config files are in the repo).
Figure 4 shows the graph for some of the training
metrics(box loss, classification loss, etc.) for our best
performing YOLOv4 model. For YOLOR, we used the
YOLOR p6 configuration, which uses silu activation
function in convolutional layers. All models were
trained with 300 epochs with the exception of the latest
obtained YOLOv4 result, which was trained for 100
epochs. The YOLOv4 result is still comparable with
other results since there is a slight overfitting problem
when training the model for more epochs. Both
YOLOv4 and YOLOR were initialized using weights
pretrained on MS_COCO dataset, and the test results
are included in Table 5.

Figure 4. YOLOv4 training performance trained with
100 epochs on images with size 640x640

The impact of Image size on performance:

In this section and the section that follows, we use
YOLOR as an example to illustrate some of the
problems we noticed during training. In the original
implementation of YOLOR, all the input images are
required to be in square shape and have a size in
multiples of 64, so we conducted three experiments on
sizes 448x448, 614x614, and 1088x1088.
The result of mAP@.5 and inference speed are shown
in Table 4 and plotted in Figure 5 respectively. We can
see that the image size does have an impact on the
overall performance, where the performance of larger
images can produce higher precision but can be slower
in inference speed. However, unfortunately, because
training a model on images with higher resolution can
require more GPU memory than small size images, the
training process on 1088x1088 images size was
stopped due to the limited amount of memory available
in GPU (614x614 requires to allocate ~10.8GB GPU
memory, and the maximum size GPU memory
available in SCC Tesla V100 is 16GB).

Figure 5: Training performance plots of two trainable
image size 448x448 vs 614x614

image_size mAP_0.5 Inference
FPS(ms)

448x448 65.9 164.4

614x614 71.27 99.9

1088x1088 CUDA out of
memory

CUDA out of
memory

Table 4: Training result of all three groups of image
size 448x448, 614x614, 1088x1088

Training Epochs:
As we can see in Figure 6, those training and
validation loss being plotted in TensorBoard show a
clear “sweet spot” where the model starts to overfit the
training data. As we can see after about 150 epochs of
training, the validation loss across three criteria starts
to increase while the training loss is still decreasing
(obj_loss use BCELoss – PyTorch BCEWithLogitsLoss
to compute the objectness of bounding boxes, and
cls_loss use BCELoss to compute the classification
loss for each object). Therefore, it might be a good

Deep Learning Spring 2022, Project Report

strategy to just train the model with 150 epochs to
reduce the computational cost. The original
implementation of the models had checkpoints
implemented after each epoch, and we only used the
weights associated with the epoch that produced the
best mAP result on the validation set to do test
inference.

Figure 6: Training Performance of YoloR trained with
300 epochs on image size 448x448.

6.3 Overall Comparison
The experimental results of TridentNet [7], Dynamic
R-CNN[17], YOLOv4[13], and YOLOR[21] shows that
YOLOR has outperformed all other methods by a large
amount. The result of YOLOR has doubled the
performance of TridentNet (best result in [7]) (e.g.,
AP@[0.5:0.95] from 24.2 to 58.7, and AP50 from 36.3
to 72.2). Therefore, we put more focus on optimizing its
performance, including different approaches mentioned
in the extended works in Section 3 and some
fine-tuning techniques in Section 3.3.

Model AP.5..0.95 AP50 AP75 APS APM APL

TridentNet (best
result shown in
[7])

24.2 36.3 26.6 4.8 10.7 26.1

Dynamic
R-CNN

30.8 42.6 33.5 4.9 14.6 33.7

YoloV4 39.1 52.9 43.2 12.9 25.5 46.7

Scaled YoloV4 N/A N/A N/A N/A N/A N/A

YoloR 62.1 74.2 67.7 28.4 48.0 69.9

Table 5: Mean average precision on the test set of
ZeroWaste-f of MS-COCO-pretrained TridentNet,
Dynamic R-CNN, YoloV4, Scaled YoloV4, YoloR
finetuned on ZeroWaste-f. Please refer to Appendix

E for detailed training, validation, and testing result,
and Appendix C&D for predicted image samples.

7. Conclusion
Among all models we have tested so far, YOLOR has
achieved the best performance over all evaluation
criteria and has outperformed TridentNet greatly, 2.57x
higher on AP and 5.92x higher on APS. The detailed
benchmark comparison between YOLOR and
TridentNet is shown in Table 5. Another single-stage
detector that we have tested, YOLOv4, also achieved a
fairly good result and surpassed the performance of
TridentNet, owing to the “Bag of Freebies” [13]
technique that was introduced in the YOLOv4 paper.
Besides, we noticed that Dynamic R-CNN, as a
two-stage detector, did not achieve better performance
than a single-stage detector in terms of the mean
average precision, even with optimization techniques
being added. This indicates that the performance of
two-stage detectors might not always perform better
than the single-stage detector, and some models can
be more suitable for specific datasets than others.

8. Future Works
Memory Optimization: In our experiments, we have
encountered CUDA out of memory issues. The main
reason for CUDA running out of memory when training
with a high-resolution image or a larger batch size was
the expensive memory consumption of the Adam
optimizer. We believe that one approach to solve the
issue is to use some model parallelism strategy to
partition the optimizer state among multiple GPU
nodes. As we can see in Figure 7, only one of the GPU
devices was used when training the YoloR model and
left the other three idled. There are some off-the-shelf
solutions available to use, and we list two here as
examples: 1) use Zero Redundancy Optimizer
provided by deepspeed to offload GPU memory to both
CPU or/and NVMe memory (require some modification
to the code); 2) use DistributedDataParallel provided
by PyTorch to perform distributed training.

https://www.deepspeed.ai/tutorials/zero/
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

Deep Learning Spring 2022, Project Report

Figure 7: Tesla V100-SXM2 GPU architecture
specification.

Small Objects Detection: As we can see in Table 5,
the small object detection is still pretty hard across all
the models. The test accuracy of YoloR in small object
detection is about 40.6% of the accuracy in larger
objects and 59.2% in medium-size objects, which
shows a spatial room for improvement. There are two
approaches that we can try to improve the
performance of small object detection: 1) apply tiling on
a higher resolution image before training, e.g., perform
2x2 tiling on 1088x1088 images size; [30] 2) apply
SAHI(sliding Aided Hyper Inference) that described in
this repo. [29]

9. Code Repository
Please check out our repository following this link:
https://github.com/Boston-University-Projects/EC523_
DL_CV_Project

References
[1] World Bank Group. “Global Waste to Grow by 70
Percent by 2050 Unless Urgent Action Is Taken: World
Bank Report.” World Bank, 24 Sept. 2018,
www.worldbank.org/en/news/press-release/2018/09/20
/global-waste-to-grow-by-70-percent-by-2050-unless-ur
gent-action-is-taken-world-bank-report.
[2] Y. Li, Y. Chen, N. Wang, and Z. Zhang, Scale-Aware
Trident Networks for Object Detection. 2019.
[3] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao,
Scaled-YOLOv4: Scaling Cross Stage Partial Network.
2021.
[4] K. He, G. Gkioxari, P. Dollár, and R. Girshick, Mask
R-CNN. 2018.
[5] C.-Y. Wang, H.-Y. M. Liao, I.-H. Yeh, Y.-H. Wu, P.-Y.
Chen, and J.-W. Hsieh, CSPNet: A New Backbone that
can Enhance Learning Capability of CNN. 2019.

[6] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and
H. Adam, Encoder-Decoder with Atrous Separable
Convolution for Semantic Image Segmentation. 2018.
[7] Dina Bashkirova and K. Saenko, “ZeroWaste:
Towards Deformable Object Segmentation in Extreme
Clutter,” 2021.
[8] Koech, Kiprono Elijah. “On Object Detection Metrics
with Worked Example.” Medium, Towards Data
Science, 18 Dec. 2021,
https://towardsdatascience.com/on-object-detection-m
etrics-with-worked-example-216f173ed31e.
[9] Papers With Code, Semantic Segmentation
Benchmarks,
https://paperswithcode.com/task/semantic-segmentatio
n
[10] Papers With Code, Object Detection Benchmarks,
https://paperswithcode.com/task/object-detection
[11] L. H. Li et al., “Grounded Language-Image
Pre-training,” Arxiv, 2021.
[12] C.-Y. Wang, A. Bochkovskiy, en H.-Y. M. Liao,
“Scaled-YOLOv4: Scaling Cross Stage Partial
Network”, in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
2021, bll 13029–13038.
[13] A. Bochkovskiy, C.-Y. Wang, en H.-Y. M. Liao,
“YOLOv4: Optimal Speed and Accuracy of Object
Detection”, CoRR, vol abs/2004.10934, 2020.
[14] C.-Y. Wang, I.-H. Yeh, en H.-Y. M. Liao, “You Only
Learn One Representation: Unified Network for
Multiple Tasks”, arXiv preprint arXiv:2105. 04206,
2021.
[15] Proença, P. F., & Simões, P. (2020). TACO: Trash
Annotations in Context for Litter Detection.
[16] Koskinopoulou, M., Raptopoulos, F.,
Papadopoulos, G., Mavrakis, N., & Maniadakis, M.
(2021). Robotic Waste Sorting Technology: Toward a
Vision-Based Categorization System for the Industrial
Robotic Separation of Recyclable Waste. IEEE
Robotics Automation Magazine, 28(2), 50–60.
https://doi.org/10.1109/MRA.2021.3066040
[17] Zhang, H., Chang, H., Ma, B., Wang, N., & Chen,
X. (2020, August). Dynamic R-CNN: Towards high
quality object detection via dynamic training. In
European conference on computer vision (pp.
260-275). Springer, Cham.
[18] Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li,
X., ... & Lin, D. (2019). MMDetection: Open mmlab
detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155.
[19] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial
Pyramid Pooling in Deep Convolutional Networks for
Visual Recognition,” in Computer Vision – ECCV 2014,

https://github.com/obss/sahi
https://github.com/Boston-University-Projects/EC523_DL_CV_Project
https://github.com/Boston-University-Projects/EC523_DL_CV_Project
http://www.worldbank.org/en/news/press-release/2018/09/20/global-waste-to-grow-by-70-percent-by-2050-unless-urgent-action-is-taken-world-bank-report
http://www.worldbank.org/en/news/press-release/2018/09/20/global-waste-to-grow-by-70-percent-by-2050-unless-urgent-action-is-taken-world-bank-report
http://www.worldbank.org/en/news/press-release/2018/09/20/global-waste-to-grow-by-70-percent-by-2050-unless-urgent-action-is-taken-world-bank-report
https://towardsdatascience.com/on-object-detection-metrics-with-worked-example-216f173ed31e
https://towardsdatascience.com/on-object-detection-metrics-with-worked-example-216f173ed31e
https://paperswithcode.com/task/semantic-segmentation
https://paperswithcode.com/task/semantic-segmentation
https://paperswithcode.com/task/semantic-segmentation
https://paperswithcode.com/task/object-detection
https://paperswithcode.com/task/object-detection
https://doi.org/10.1109/MRA.2021.3066040

Deep Learning Spring 2022, Project Report

Springer International Publishing, 2014, pp. 346–361.
doi: 10.1007/978-3-319-10578-9_23.
[20] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, Path
Aggregation Network for Instance Segmentation. arXiv,
2018. doi: 10.48550/ARXIV.1803.01534.
[21] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, You Only
Learn One Representation: Unified Network for
Multiple Tasks. arXiv, 2021. doi:
10.48550/ARXIV.2105.04206.
[22] H. Zhang, M. Cisse, Y. N. Dauphin, and D.
Lopez-Paz, mixup: Beyond Empirical Risk
Minimization. arXiv, 2017. doi:
10.48550/ARXIV.1710.09412.
[23] G. Ghiasi, T.-Y. Lin, and Q. V. Le, DropBlock: A
regularization method for convolutional networks.
arXiv, 2018. doi: 10.48550/ARXIV.1810.12890.
[24] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and
C. Bregler, Efficient Object Localization Using
Convolutional Networks. arXiv, 2014. doi:
10.48550/ARXIV.1411.4280.
[25] X. Long et al., PP-YOLO: An Effective and
Efficient Implementation of Object Detector. arXiv,
2020. doi: 10.48550/ARXIV.2007.12099.
[26] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B.
Hariharan, and S. Belongie, Feature Pyramid Networks
for Object Detection. arXiv, 2016. doi:
10.48550/ARXIV.1612.03144.
[27] V. Meel, “Yolor - you only learn one representation
(what's new, 2022),” viso.ai, 17-Jan-2022. [Online].

Available: https://viso.ai/deep-learning/yolor/.
[Accessed: 05-May-2022].
[28] A. Tewari, “Yolor model architecture,” OpenGenus
IQ: Computing Expertise & Legacy, 09-Mar-2022.
[Online]. Available: https://iq.opengenus.org/yolor/.
[Accessed: 05-May-2022].
[29] Akyon, F.C., Altinuc, S.O. and Temizel, A., 2022.
Slicing Aided Hyper Inference and Fine-tuning for
Small Object Detection. arXiv preprint
arXiv:2202.06934.
[30] J. Solawetz, “Small object detection guide,”
Roboflow Blog, 28-Feb-2022. [Online]. Available:
https://blog.roboflow.com/detect-small-objects/.
[Accessed: 05-May-2022].
[31] M. Everingham, L. Van Gool, C. K. Williams, J.
Winn, and A. Zisserman, “The Pascal Visual Object
Classes (VOC) challenge,” International Journal of
Computer Vision, vol. 88, no. 2, pp. 303–338, 2009.
[32] T.-Y. Lin et al., “Microsoft COCO: Common objects
in context,” arXiv [cs.CV], 2014.
[33] “Confusion Matrix in Python,” Infinite Solutions
Blog, [Online]. Available:
https://www.ris-ai.com/confusion-matrix#What-is-a-Con
fusion-Matrix?. [Accessed: 05-May-2022].
[34] I. Miller, M. Miller, και J. E. Freund, John E.
Freund’s Mathematical Statistics with Applications.
Pearson, 2014.

Method pretraine
d_model

Img
Size(px)

FPS(ms) AP AP50 AP75 APS APM APL

TridentNe
t (best
result
shown in
[7])

N/A N/A N/A 24.2 36.3 26.6 4.8 10.7 26.1

YoloR yolor_p6.
pt

640x640 99.9 62.1 74.2 67.7 28.4 48.0 69.9

Improve
ment on
TridentN
et

N/A N/A N/A 2.57 x 2.04 x 2.55 x 5.92 x 4.49 x 2.68 x

Table 6. Detailed test result for YoloR

Name Task File names No. Lines of Code
Zhengqi Dong ● Initialized and set up Github repo, group communication

channel, and shared Google Drive
● Led weekly meeting and provided help and suggestion

on other group member’s work.

many batch scripts under
./roboflow-ai/, and many
place under
./roboflow-ai/yolor folder,

Too many to
count…

https://viso.ai/deep-learning/yolor/
https://iq.opengenus.org/yolor/
https://blog.roboflow.com/detect-small-objects/
https://www.ris-ai.com/confusion-matrix#What-is-a-Confusion-Matrix
https://www.ris-ai.com/confusion-matrix#What-is-a-Confusion-Matrix

Deep Learning Spring 2022, Project Report

● Reformatted image dataset, and performed some
preprocessing, such as reorganized dataset with new
split ratio, image resizing, tiling, etc.

● Fixed bugs that were broken when performing training
and testing on a customized yolo formatted dataset.

● Modified cocoAPI in test.py to perform evaluation based
on our project’s need (e.g., APsmall, APmedium, and APlarge)

● Wrote batch script to train yoloR and use it as a template
for other group members.

● Ran training and testing code for many versions of
dataset that has been augmented or preprocessed with
different strategies, with download code written in
./rboflow-ai/download_data.py

● Wrote a clear and thorough walkthrough guidance in
jupyter notebook to reproduce the result, which was
stored in ./rboflow-ai/yolor/waste_detection_yoloR.ipynb

● Wrote section ‘Setting up Environment’ and ‘Appendix A’
of README.md and Resources.md

● Wrote section 2.1(YOLOR), 3, 4, 5, 6.2, 6.3, 7, and 8 of
report

mainly in:
- train.py
- test.py
- waste_detection_

yoloR.ipynb

Zeyu Gu ● modified YOLOv4 code for it to work on our customized
dataset

● Modified test evaluation section of YOLOv4 to make
cocoAPI work on our customized dataset

● Implemented dropblock and spatial dropout module in
YOLOv4

● Wrote code to enable user to control augmentation when
training YOLOv4

● Created custom YOLOv4 config file
● Wrote training batch scripts following Zhengqi’s template
● Wrote Jupyter notebook on how to train YOLOv4 and

dynamic R-CNN
● Trained and tested YOLOv4 with techniques mentioned

in this report
● Wrote most part of the repo readme
● Wrote section 2, 3.1, 3.1.1, and parts of section 7 of the

report

Under
YOLOv4/PyTorch_YOLOv
4 folder:

- train.py
- test.py
- models/models.py
- utils/layers.py
- utils/parse_config.

py
- Some config files

Under notebooks directory:
- waste_detection_

yolov4.ipynb
- waste_detection_

D-RCNN.ipynb

~400 excluding the
config files because
a lot of config files
have repetitive parts

Tao Zhang ● Discovered and utilized the MMdetection toolbox for
Dynamic R-CNN model

● Modified the dataset setting (including the number of
classes and the name for each class in the toolbox) to
train on Zerowaste Dataset

● Modified the training parameters settings including the
learning rate and number of training epochs (300)

● Utilized the pre-trained model from the toolbox to
enhance the performance

● Adjusting the weight decay to improve the performance
● Wrote batch scripts so that it can be trained

automatically on SCC
● Trained and tested the Dynamic R-CNN model
● Wrote section 3.2, 3.2.1, 4 of the report
● Revised the section 6.1, 6.3 of the report

Dynamic R-CNN:
Faster_rcnn_r50_fpn.py
Coco_detection.py
Default_runtime.py
Some Config files
Batch script files

Revised and added
hundreds lines of
code to execute the
Dynamic R-CNN
model to be trained
and tested on the
dataset

Yufan Lin ● Discovered and utilized analysis tool for Dynamic
R-CNN model

● Modified the optimizer setting
● Utilized the evaluation metrics from analysis tool to

evaluate the performance of Dynamic R-CNN model
● Utilized the bbox map evaluation from analysis tool to

evaluate the performance of Dynamic R-CNN model
● Made all of the front end , back end and web page

template part from scratch of the UI to demo the result
of our models.

● Wrote section 1 of the report
● Revised the section 3.2,6.3 of the report

Under Dynamic R-CNN:
Optimizer file
analysis_tools(folder)

● eval_metric.py
● analyze_results.p

y
● Analyze_logs.py

Under Web:
● templates(folder)
● 523project_datab

ase.sql
● project_web.py

Revised and added
several hundreds of
lines for both
Dynamic R-CNN
and web UI

Deep Learning Spring 2022, Project Report

Table 7. Team member contributions

Appendix A. Detailed Roles
See the table above (Table 7) for each teammate.
Include the file names and number of lines of code
written.

Appendix B. Code repository
Please check out our repository at this link:
https://github.com/Boston-University-Projects/EC523_
DL_CV_Project

Appendix C: YoloR prediction and labeling
samples on the test set of ZeroWaste-f of with
the best_overall model trained on ZeroWaste-f

over 300 epochs

Figure 8: test_batch2_labels.jpg

Figure 9: test_batch2_pred.jpg

Appendix D: YoloV4 prediction and labeling

Figure 10: test_batch2_labels.jpg

https://github.com/Boston-University-Projects/EC523_DL_CV_Project
https://github.com/Boston-University-Projects/EC523_DL_CV_Project

Deep Learning Spring 2022, Project Report

Figure 11: test_batch2_pred.jpg

Appendix E: YoloR Precision-Recall Curve

Figure 12: YoloR Precision-Recall Curve
evaluated on test dataset on best_overall.pt
model that was trained with 300 epochs

Appendix F: YoloR Detailed Training, Validation, and Testing Result
Hyperparameters {'lr0': 0.01, 'lrf': 0.2, 'momentum': 0.937, 'weight_decay': 0.0005, 'warmup_epochs': 3.0,
'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1, 'box': 0.05, 'cls': 0.5, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2,
'anchor_t': 4.0, 'fl_gamma': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, 'degrees': 0.0, 'translate': 0.5, 'scale': 0.5,
'shear': 0.0, 'perspective': 0.0, 'flipud': 0.0, 'fliplr': 0.5, 'mosaic': 1.0, 'mixup': 0.0}

Training result: (300 epochs, 3092 images, with default augmentation)

Deep Learning Spring 2022, Project Report

Validation result (876 images):

⇒ As we can see, it’s enough to just have model to be trained for 100 epochs.

testing result: 448 images
(dl_env)dong760@scc-x05:/projectnb/dl523/projects/RWD/EC523_DL_CV_Project/roboflow-ai/yolor$ python test.py
--conf-thres 0.0 --img 640 --batch 32 --device 0 --data ../zero-waste-10/data.yaml --cfg cfg/yolor_p6.cfg --weights
runs/train/yolor_p6_2022_05_01-00_37_11/weights/best_ap.pt --task test --names data/zerowaste.names --verbose
--save-json --save-conf --save-txtcheck_file -- > file: ../zero-waste-10/data.yaml

Namespace(augment=False, batch_size=32, cfg='cfg/yolor_p6.cfg', conf_thres=0.0, data='../zero-waste-10/data.yaml',
device='0', exist_ok=False, gt_json_dir='../zero-waste-10/test/_annotations.coco.json', img_size=640, iou_thres=0.65,

Deep Learning Spring 2022, Project Report

name='exp', names='data/zerowaste.names', project='runs/test', save_conf=True, save_json=True, save_txt=True,
single_cls=False, task='test', verbose=True,
weights=['runs/train/yolor_p6_2022_05_01-00_37_11/weights/best_ap.pt'])
Using torch 1.11.0 CUDA:0 (Tesla V100-PCIE-16GB, 16160MB)

Model Summary: 665 layers, 36854616 parameters, 36854616 gradients
/usr4/dl523/dong760/.conda/envs/dl_env/lib/python3.8/site-packages/torch/functional.py:568: UserWarning:
torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at
/opt/conda/conda-bld/pytorch_1646755903507/work/aten/src/ATen/native/TensorShape.cpp:2228.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]

Scanning labels ../zero-waste-10/test/labels.cache3 (442 found, 0 missing, 6 empty, 0 duplicate, for 448 images): 448it
[00:00, 17943.38it/s]

Class Images Targets P R mAP@.5 mAP@.5:.95: 0%|
| 0/14 [00:00<?, ?it/s]=========> type(output): <class 'list'>

Class Images Targets P R mAP@.5 mAP@.5:.95: 7%|███▊
| 1/14 [00:14<03:11, 14.75s/it]=========> type(output): <class 'list'>

Class Images Targets P R mAP@.5 mAP@.5:.95: 14%|███████▋
| 2/14 [00:26<02:34, 12.88s/it]=========> type(output): <class 'list'>

Class Images Targets P R mAP@.5 mAP@.5:.95:
100%|███| 14/14 [03:30<00:00,
15.06s/it]
wandb: Currently logged in as: dragogo (use `wandb login --relogin` to force relogin)
wandb: wandb version 0.12.15 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.12.12
wandb: Run data is saved locally in
/projectnb2/dl523/projects/RWD/EC523_DL_CV_Project/roboflow-ai/yolor/wandb/run-20220502_001029-29wlrglc
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run sandy-frost-28
wandb: ⭐ View project at https://wandb.ai/dragogo/ec523-zerowaste
wandb: 🚀 View run at https://wandb.ai/dragogo/ec523-zerowaste/runs/29wlrglc

all 448 2.7e+03 0.691 0.724 0.745 0.618
cardboard 448 1.75e+03 0.684 0.674 0.698 0.555

metal 448 50 0.72 0.82 0.825 0.741
rigid_plastic 448 187 0.712 0.699 0.734 0.621
soft_plastic 448 713 0.648 0.703 0.725 0.554

Speed: 3.6/58.0/61.7 ms inference/NMS/total per 640x640 image at batch-size 32

Evaluating pycocotools mAP... saving runs/test/exp24/best_ap_predictions.json...
loading annotations into memory...
Done (t=0.01s)
creating index...
index created!
Loading and preparing results...
DONE (t=1.04s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=5.41s).
Accumulating evaluation results...
DONE (t=0.82s).

Deep Learning Spring 2022, Project Report

Average Precision (AP) @[IoU=0.50:0.95 | area= all | maxDets=100] = 0.620
Average Precision (AP) @[IoU=0.50 | area= all | maxDets=100] = 0.743
Average Precision (AP) @[IoU=0.75 | area= all | maxDets=100] = 0.677
Average Precision (AP) @[IoU=0.50:0.95 | area= small | maxDets=100] = 0.284
Average Precision (AP) @[IoU=0.50:0.95 | area=medium | maxDets=100] = 0.478
Average Precision (AP) @[IoU=0.50:0.95 | area= large | maxDets=100] = 0.699
Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets= 1] = 0.463
Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets= 10] = 0.722
Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets=100] = 0.767
Average Recall (AR) @[IoU=0.50:0.95 | area= small | maxDets=100] = 0.554
Average Recall (AR) @[IoU=0.50:0.95 | area=medium | maxDets=100] = 0.693
Average Recall (AR) @[IoU=0.50:0.95 | area= large | maxDets=100] = 0.816
================> Start Printing evaluated result:
[0.62046 0.74275 0.67696 0.28352 0.47832 0.69902 0.46331 0.72187 0.76741 0.55393
0.69333 0.81559]
================> End of Printing!
Results saved to runs/test/exp24

wandb: Waiting for W&B process to finish... (success).
wandb:
wandb: Synced sandy-frost-28: https://wandb.ai/dragogo/ec523-zerowaste/runs/29wlrglc
wandb: Synced 6 W&B file(s), 6 media file(s), 0 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20220502_001029-29wlrglc/logs

Note: You can run the following command under roboflow-ai/yolor/ folder to see the plots from TensorBoard,
$tensorboard --logdir . --host "0.0.0.0" --port 7777, and all those output log files and various models are saved under
./'runs/train' directory.

Appendix G: Dynamic R-CNN Detailed Training, Validation, and Testing Result
Training Process of the pretrained model (300 epochs)

Deep Learning Spring 2022, Project Report

Validation Results for different weight decays

Deep Learning Spring 2022, Project Report

Testing Process of the model from scratch

Testing Process of the pretrained model with optimized weight decay

Deep Learning Spring 2022, Project Report

