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Lec12 Optical Flow 
Motion field: aka action motion. It’s the projection of the 3D scene motion 
into the 2D image. 
Optical flow: The motion of brightness patterns in the image.  
Optical flow estimation: In image, all we have are brightness pattern, so the 
motion field cannot be measured directly, so we need to use optical flow. 
Optical flow can be estimated by tracking the displacement of brightness 
patten, and we hope this patten will corresponds to the motion field. 
Q1: Does optical flow always corresponds to motion field?  No, there can be 
a case that motion field exists but not optical flow(a uniform rotating sphere 
under fixed lighting), and optical flow exist but not motion field (a change of 
light source circling around object, e.g., Sundial). There is also a special case 
where both motion field and optical flow exist, but the optical doesn't 
correspond to the motion field, e.g., Barber Pole illusion.  
Assumption 1: Brightness constancy constraint. the brightness of the points 
remains constant, which can be formulated as: 𝐼 𝑥, 𝑦, 𝑡 𝐼 𝑥 𝛿 ,𝑦
𝛿 , 𝑡 𝛿 , where 𝛿 , 𝛿 𝑢δ𝑡, 𝑣δ𝑡, the displacement of point--- (1) 
Assumption 2: Small 
motion. Points don’t move 
very far, or the 
displacement δ , δ  and 
time step δ  are small. 
 This allows us to use 
only the first term of 
Taylor series expansion to 
estimate the derivative, as 
shown below: 
𝐼 𝑥 𝛿𝑥,𝑦 𝛿𝑦, 𝑡
𝛿𝑡 𝐼 𝑥,𝑦, 𝑡 𝐼 𝛿𝑥
𝐼 𝛿𝑦 𝐼 𝛿𝑡 --- (2) 
By combing above two 
equations, we have the: 𝐼 𝑢 𝐼 𝑣 𝐼 0 (Or Δ𝐼 ∙ 𝑢 𝑣 𝐼  --- (3) , where (u, v) 
is optical flow that we want to estimate. 
Q2(Aperture problem) which direction in image along optical flow can’t be reliably 
estimate?  Only normal flow can be estimated/recovered, but not parallel flow or the 
edges. Because, we have 1 equation but 2 unknowns, which is an under-constrained 
problem.  Also, as we see equation (3) involves dot product between the image 
gradient ∇I and the optical flow u, ∇I ꞏ u + It = 0, which gives no equation on u when u 
and ∇I are orthogonal. 
Assumption 3: Spatial coherence constraint – points move like their neighbors, so the 
pixel’s neighbors have same (u, v). With this constraint, we can use n neighboring 
pixels to set up a linear least squares system, which can be solve with SVD or QR 
decomposition.  The solution for (u, v) is 𝐮 𝐴 𝐴 𝐴 𝐵, where A is the gradient, 
Δ𝐼, and B is the time derivative, 𝐼   
Q3: When is the system solvable?  
1) 𝐴 𝐴 is invertible, that is 
𝑑𝑒𝑡 𝐴 𝐴 0; 2)𝐴 𝐴 must be well-
conditioned, where the eigenvalues 
λ , λ  are large and fall into the 

“corner region". 
Q4: Where optical flow can fail: 1) 
Brightness constancy constrain 
doesn’t hold  Use feature 
matching(e.g., SIFT) or tracking(e.g., 
Shi-Tomasi feature tracker) to find 
good matching pairs to estimate 
optical flow. 2) When motion is large  The higher order terms of Taylor series 
expansion can no longer be discarded/neglected.  One solution is to use multi-
resolution with iterative refinement. Iteratively estimate the optical flow at lower 
resolution and warp the image at the next higher resolution using the estimated optical 
flow  Alternative is template matching but can be computationally expensive. 3) A 
point doesn’t move like its neighbors  Motion segmentation: When doing consistency 
checking, only consider the pixels in 
the same region. 
Q5: Give an expression of (u, v) for 
three cases that camera moves forward/ 
backward/counter-clockwise, and sketch flow 
field includes the flow vectors for (𝑥, 𝑦) = (0, 0), 
(0, 1), (1, 0)… 

Lec 13: Camera calibration 
Camera calibration problem: Given n points of 
3D locations 𝑋 , 𝑖 ∈ 1,𝑛 , and n corresponding 
image projection 𝑥 , and we  
want to estimate the projection parameter P. ==> 
Two approach: 1) Linear method: use svd to 
solve linear least squares system  the projection 
has 11 dof, and each 2D-3D correspondence gives two ind equs, so we  

 need 6 matching pairs (FYI: The linear approach does not work if all 3D points are 
coplanar). 2) Preferred approach: In practise, we first initialize the camera calibration 
matrix with linear method, and refine the 
solution with non-linear method(e.g., RANSAC) 
that minimize the error between measured 2D 
points and esitmated projection of 3D points by 
triangulating two images,  
∑ |proj K R ∣ t X x | .  
Q1: How to get the camera center in world 
coord from projection matrix?  ==> The camera center in world coordinates is in null 
space of projection matrix P=K[R|t] (use SVD to decompose P and take last row of V). 
Q2: Calibrate a new camera: you have a new camera on a robot to perform Visual 
Odometry, and you want to calibrate it to have more accurate estimation, describe a 
procedure to do it:  The underlying idea is to take a video on a scene with known 
distances to create 2D-3D correspondences. For example, you can print out a square grid 
that segmented with 1’ inch black and white blocks. After you identified the location of 
grid, you can use it to perform calibration. 
Triangulation: Given known camera projection matrix P of the same 3D point in two or 
more images (x1, x2), compute the 3D coordinate of that point ==> Three approaches: 1) 
Geometric approach: Find the shortest segment connecting two viewing  rays, and take 
the midpoint of that segment; 2) Linear: Similar to how we estimate the projection 
matrix. For each matching pair of 2D points, solve the linear least square system to 
triangulate the 3D position of that point.  The 3D points has 3 unknown, and each 
matching pairs can give us two ind equs, so 1 matching pair is enough; 3) Non-linear: 
refine X that minimizes, |proj P X x | |proj P X x |  
 
Lec 14: Single 
view 
measurement -- 
Vanishing Lines 
Vanishing line: 
the line that 
connects two 
finite vanishing 
points is called the vanishing line  How to compute vanishing line from two vanishing 
points? Take cross product of two vanishing points, e.g., l  a x b 
Camera calibration using vanishing points:  
- Can be solved with three orthogonal vanishing points 

(at least two are finite). 
- Good: No need for calibration chart, and 2D-3D 

correspondences; 2) Could be completely automatic.  
- Bad: 1) Only applies to certain kinds of scenes with at least two finite vanishing 

points; 2) can be tricky to accurately localize vanishing points. 
Measuring height from a single image: Idea: use a known height of object (R) as 

reference and estimate 
height of other object (H) 
by using their relative 
ratio of height in the 
image.  We first 
compute all vanishing 
points (𝑣 , 𝑣 , 𝑣 ), and 
then we compute v, then t, 
then H. Note: Assume the 

cross ratio of height invariant to 1) the 
perspective projection from 3D to 2D; 2) 
permutation of points 

Chap 15: Epipolar Line 
Epipolar geometry setup: Baseline is line connecting two camera origins; Epipoles(e 
and e’) are where the baseline intersects with two image planes; Epipolar plane is the 
region formed by X, O, O’. Different X will form different epipolar planes. There is a 
family of planes passing through O and O’. 
Different configurations of epipolar setup:  
- Converging cameras: Epipoles are visible in the image when two images formed an 

angle. 
- Motion parallel to image plane: Epipoles are not visible in the image, when two 

images taken at a parallel line, epipolar lines parallel 
- Motion perpendicular to image plane: Epipoles coincides at the principal point of 

the camera, and epipolar lines algo go through the center of image. 
Epipolar Constraints: 1) For a point x in an image, the corresponding point x’ in 
another image must lie along the epipolar line; 2)Potential matches for x must lie on the 
epipolar line 𝑙’, and matches for x’ also must lie on 𝑙 ; 3) Whenever two points x and x’ 
lie on the matching epipolar lies, the visual rays corresponding to them meet in space, 
i.e., x and x’ are the projections of same 3D point X. 
Math of epipolar constraint:  
In calibrated case, we know intrinsic and extrinsic, so we can premultiply K to get 

normalized image coordinates, where 𝑥 ′ 𝑡 𝑅𝑥 0  𝑥 ′ 𝐸𝑥 0, where E is 𝑡 𝑅. 
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Property of E: 1) Ex is epipolar line associated with x; 2) 𝐸 𝑥 is the epipolar lines 
associated with x’; 3) 𝐸𝑒 0, 𝐸 𝑒 0; 4)E is singular(rank 2) and has 5 DOF;  
In uncalibrated case, we have to compute F, which is 𝐾 𝐸𝐾 . Property of F: First 3 is 
same as E, and for last one, F is singular(rank 2) with 7 DOF.  How to estimate F? We 
have 𝑥 𝐹𝑥 0.  
Eight-point algo: Solve least square equation, enforceing singularity by taking SVD and 
drop the smallest singular value. Normalized eight-point algo. Why?  𝑥,𝑦, 𝑥 ,𝑦  are 
pixel coordinates, they have different magnitude and might cause numerical instability. 
Solution: transform images to a new coordinate system, the new coordinate system has 
its origin at centroid of points. After translation, scale the coord so that the mean squared 
distance btw origin and points is 2 pixels. Then run eight-point algo. Enforce rank 2. 
Transform F back to its original unit. Suppose T and T’ are being normalized, and 𝐹
𝑇 𝐹𝑇.  
 Q1: Is it possible to find the depth of 3D point Q from affine camera(aka weak 
perspective or orthographic camera)? What about perspective camera?  No for affine, 
because all 3D objects transform to 2D image with parallel projection, so we can’t find 
the depth; Yes for perspective camera, because we can do triangulation, and we have 
depth(x) = Bf/(x – x). 
Q2: What is an epipolar line? How is it determined? How can the concept be used to 
simplify the correspondence problem in stereo vision?  Epipolar lines is the line 
connecting epipoles to the projection of X in other image; All epipolar lines intersect at 
the epipole, so a point x in one image generates a line in the other on which its 
corresponding point x’ must lie.  Thus, it can help to reduce the search space for 
correspondence in stereo matching. 

Lec 16: SFM 
Problem: Given corresponding image point(2D), x_i,j, ith point in jth frame, and we 
want to find its corresponding 3D point X_j, x A X t , i 1, … , m, j 1, … , n  
In practice, we can assume there is a transformation Q (a full rank 4x4 matrix), and we 
can apply some constraint on it, and the observation/data/measurement matrix(D) remain 
unchanged. 
SFM ambiguity: SFM is not uniquely solvable, and 
there are many SFM ambiguity we need to account for: 1) Projective ambiguity(No 
constrain on Q): points in two images looks the same, but they were projected by 
different shape of object.  still preferred in practice, bez it makes the least assumption 
about the world; 2) Affine ambiguity: Imposed parallelism constraint on Q. It consists 
of a full rank matrix and a translation vector [ 𝐴, 𝑡 , 0 , 1 ]. 3) Similarity 
ambiguity(one with the least ambiguity): Enforced orthogonality constraint, but still has 
scaling ambiguity, e.g., scaled the entire scene by k and scale the camera matrices by 1/k, 
the two images look same but were projected by different 3D scene. Solutions for 
SFM: Affine SFM: 
- Assume orthographic projection 
- Input: 2D image points D  Output: 

Camera parameters(M) and 3D scene 
points matrix (S). 

- Use centering trick to eliminate one 
unknown 𝐶   Basically we assume the 
origin of world is at the centroid of scene 
points, and we will shift(subtract) each 
image point by the centroid in each view, that’s 𝒙 𝑥 ∑ 𝒙𝒊𝒌  then we 

have: 𝒙 𝑨𝒊𝑿 , where each 2D points is being normalized. 

- Q1: How many knowns and unknowns for m images and n points?  2mn knowns 
and 8m + 3n unknowns, and we must 
have 2mn ≥8m + 3n – 12, e.g., given 
10 images(m=10), we need at least six 
points(n>=6) 

Q2: What must be the rank of data 
matrix(D)?  Rank(D) = Rank(MS) 𝑚𝑖𝑛 2𝑚, 3,𝑛  = 3 
Q3: How to deal with missing data in the data matrix(D)?  1) Blocking method: 
Decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results; 
2) Incremental bilinear refinement: iterate through each dense sub-block, that 
factorization, triangulation at two known cameras, and calibrate for new frame sees at 
least three known 3D point. 

Lec 17: Two-view stereo and depth prediction  
Basic stereo matching algo: If necessary, rectify two stereo 
images to transform epipolar lines into scanlines. For each pixel 
in the first image, find corresponding epipolar scanline in the 
right image, examine all pixels on the scanline and pick the best 
match, triangulate the matches in first and second image to get 
depth information, by computing disparity(x-x’), and depth(x) = 
Bf/(x – x)  Larger baseline: smaller triangulation error, but 
matching is more difficult, and vice versa. 
Local Stereo matching algorithm: Instead of matching 
pixels(noisy and time consuming), we match a small window in each image. Slide a 
window along the scanline and compare contents between the window of two images, 
with matching criteria SSD or Cross Correlation.  Effect of window size: smaller 
window give us more detail but more noise; Larger window result smoother disparity 
depth map but less detail. Where basic window search will fail: 1) Textureless 
surfaces (无纹理表面); 2) Occlusion, repetition; 3) n  on-lambertian surfaces, e.g., with 
specular highlight  
 

Non-local constraints of stereo matching: 1) Uniqueness: Each 
point in one image should match at most one point in the other 
image, but its uniqueness doesn’t always hold, can be affected by 
the depth of point in real world; 2) Ordering: corresponding points 
should appear in the same order, but the order can be affected by 
depth as well; 3) Smoothness: the disparity value(x-x’) should 
change slowly.  
Stereograms: aka 3D lens, humans use fuse pairs of images to get 
a sensation of depth. 
Parallel images: image planes of camera are parallel to each 
other and to the baseline; Camera centers are at the same height; 
Focal length are the same; Eipolar line fall along horizontal 
scanlines of the images. 
Stereo image rectification: If the image planes are not parallel, 
we can find a homography to project each view onto a 
common plane parallel to the baseline. 

Lec18: Multi-view stereo 
Goal: Given arbitrary number of images(>= 2) of same object or 
scene, we want to reconstruct a representation of its 3D model 
(e.g., depth maps, meshes, point cloud, patch clouds, volumetric model, …). The camera 
position is arbitrary, and camera calibration can be known or unknown.  Useful for 
reconstructing 3D disaster scene for inspection or interaction by drone photos. 
Why?  1) more reference view for some points being occluded or some surfaces are 
foreshortened in certain view; 2) high-res closeups of some regions; 3) Reduce errors. 
Plane sweep stereo(Fast version): Sweep plane across a range of depths w.r.t. a 
reference camera. For each depth plane, project each input image onto that plane using 
homography, and for each pixel in the composite image stack, compute the variance. The 
depth plane with the lowest variance is selected. (In practice, we will merge multiple 
depth maps that was computed for each view into a volume or a mesh. 
Patch-based multi-view stereo: 1)Detect keypoints; 2)Triangulate a sparse set of initial 
matches; 3) Iteratively expand matches to nearby locations; 4) Use visibility constraint to 
filter out false matches;5)Perform surface reconstruction 

Part5: Recognition, CNNs 
- (A XOR B) can be expressed as (A OR B) AND NOT(A AND B)) 
- z = 𝑥1 ∗ 𝑤1 𝑥2 ∗ 𝑤2  𝑏 
- Activation func: f(z) = 1, if x>=2; or -1 if x <= 2; 0 otherwise 

Q1: Draw a conv net with 𝑥 ∈ 𝑅 , one hidden 
layer with 2x1 filters and 2 channels with stride of 
2, a fully connected layer with one neuron as 
output, how many params does it have?  9 
params in total. Note: c0 is bias, and only fully 
connected layer has bias. 
Perceptron Learning rule: Cycle through training 
examples; Update the weight and biased if 
perceptron didn’t correctly classify the input data, 
w(i+1) = w(i) + lr *y(i)*x(i)  Strengthen it if it 
fails to fire, weaken it if it misfired. 
Learning types: Unsupervised(no labels, e.g., clustering, dimensionality reduction, 
manifold learning), Semi-supervised (labels for a small portion of training data); Weakly 
supervised (noisy labels, labels not exactly for the task of interest); Supervised (clean, 
complete training labels for the task of interest). 
Gradient descent(Update upon whole batch): cycle through the entire training set; Start 
with some initial estimate of w; At each step, find ∇L(w), the gradient of the loss w.r.t. 
w, and take a small step in the opposite direction: 𝒘 ← 𝒘 𝛼∇𝐿 𝒘 ; SGD   Perform 
parameter update for a single data point. 
K-fold cross-validation: Partition the data into K groups; In each run, select one of the 
groups as the validation set. 
hyperparameter: “complexity” of model controlling its generalization ability, e.g., 
number of layers, number neurons/layer, regular terms? lr? epoch? … 
underfitting: training and test error are both high. Caused by high bias, incapable of 
capturing the import features of training data; overfitting:low training error, but high 
testing error. Caused by high variance, fitting noise and unimportant charas of training 
data, and perform poorly in testing data. 
GAN: learn to sample from the distribution represented by the training set; 1) 
Generator: learns to generate samples, to fool discriminator; 2) Discriminator: learns to 
distinguish between generated and real samples 
Spatial pyramids: Orderless pooling of local features over a coarse grid. 
Reinforcement learning: Learn from (possibly sparse) rewards in a sequential 
environment. 
Active learning: The learning algorithm can choose its own training examples, 
or ask a “teacher” for an answer on selected inputs. 
ROI pooling: “crop and resample” fixed size representing ROI out of output of last conv 
layer(use NN interpolation or max pooling) 
RPN(region proposal n etwork): put an “anchor box” of fixed size over each position 
in the feature map and try to predict whether this box is likely to 
contain an object (can be multi-scale). 
Transpose conv vs normal conv: Transpose conv is also known as deconvolution. 
Transpose conv perform up-sampling to undo the previous operation, and normal conv 
can only do down-sampling. Another unsampling method is max unpooling. 
“Shallow” pipeline: hand-crafted feature representation followed by trainable classifier, 
e.g., bad of visual words, texton models, and etc.  


