
Last Update: 05/16/2022, Zhengqi Dong

Lec12 Optical Flow
Motion field: aka action motion. It’s the projection of the 3D scene motion
into the 2D image.
Optical flow: The motion of brightness patterns in the image.
Optical flow estimation: In image, all we have are brightness pattern, so the
motion field cannot be measured directly, so we need to use optical flow.
Optical flow can be estimated by tracking the displacement of brightness
patten, and we hope this patten will corresponds to the motion field.
Q1: Does optical flow always corresponds to motion field? No, there can be
a case that motion field exists but not optical flow(a uniform rotating sphere
under fixed lighting), and optical flow exist but not motion field (a change of
light source circling around object, e.g., Sundial). There is also a special case
where both motion field and optical flow exist, but the optical doesn't
correspond to the motion field, e.g., Barber Pole illusion.
Assumption 1: Brightness constancy constraint. the brightness of the points
remains constant, which can be formulated as: 𝐼 𝑥, 𝑦, 𝑡 𝐼 𝑥 𝛿 ,𝑦
𝛿 , 𝑡 𝛿 , where 𝛿 , 𝛿 𝑢δ𝑡, 𝑣δ𝑡, the displacement of point--- (1)
Assumption 2: Small
motion. Points don’t move
very far, or the
displacement δ , δ and
time step δ are small.
 This allows us to use
only the first term of
Taylor series expansion to
estimate the derivative, as
shown below:
𝐼 𝑥 𝛿𝑥,𝑦 𝛿𝑦, 𝑡
𝛿𝑡 𝐼 𝑥,𝑦, 𝑡 𝐼 𝛿𝑥
𝐼 𝛿𝑦 𝐼 𝛿𝑡 --- (2)
By combing above two
equations, we have the: 𝐼 𝑢 𝐼 𝑣 𝐼 0 (Or Δ𝐼 ∙ 𝑢 𝑣 𝐼 --- (3) , where (u, v)
is optical flow that we want to estimate.
Q2(Aperture problem) which direction in image along optical flow can’t be reliably
estimate? Only normal flow can be estimated/recovered, but not parallel flow or the
edges. Because, we have 1 equation but 2 unknowns, which is an under-constrained
problem. Also, as we see equation (3) involves dot product between the image
gradient ∇I and the optical flow u, ∇I ꞏ u + It = 0, which gives no equation on u when u
and ∇I are orthogonal.
Assumption 3: Spatial coherence constraint – points move like their neighbors, so the
pixel’s neighbors have same (u, v). With this constraint, we can use n neighboring
pixels to set up a linear least squares system, which can be solve with SVD or QR
decomposition. The solution for (u, v) is 𝐮 𝐴 𝐴 𝐴 𝐵, where A is the gradient,
Δ𝐼, and B is the time derivative, 𝐼
Q3: When is the system solvable?
1) 𝐴 𝐴 is invertible, that is
𝑑𝑒𝑡 𝐴 𝐴 0; 2)𝐴 𝐴 must be well-
conditioned, where the eigenvalues
λ , λ are large and fall into the

“corner region".
Q4: Where optical flow can fail: 1)
Brightness constancy constrain
doesn’t hold Use feature
matching(e.g., SIFT) or tracking(e.g.,
Shi-Tomasi feature tracker) to find
good matching pairs to estimate
optical flow. 2) When motion is large The higher order terms of Taylor series
expansion can no longer be discarded/neglected. One solution is to use multi-
resolution with iterative refinement. Iteratively estimate the optical flow at lower
resolution and warp the image at the next higher resolution using the estimated optical
flow Alternative is template matching but can be computationally expensive. 3) A
point doesn’t move like its neighbors Motion segmentation: When doing consistency
checking, only consider the pixels in
the same region.
Q5: Give an expression of (u, v) for
three cases that camera moves forward/
backward/counter-clockwise, and sketch flow
field includes the flow vectors for (𝑥, 𝑦) = (0, 0),
(0, 1), (1, 0)…

Lec 13: Camera calibration
Camera calibration problem: Given n points of
3D locations 𝑋 , 𝑖 ∈ 1,𝑛 , and n corresponding
image projection 𝑥 , and we
want to estimate the projection parameter P. ==>
Two approach: 1) Linear method: use svd to
solve linear least squares system the projection
has 11 dof, and each 2D-3D correspondence gives two ind equs, so we

 need 6 matching pairs (FYI: The linear approach does not work if all 3D points are
coplanar). 2) Preferred approach: In practise, we first initialize the camera calibration
matrix with linear method, and refine the
solution with non-linear method(e.g., RANSAC)
that minimize the error between measured 2D
points and esitmated projection of 3D points by
triangulating two images,
∑ |proj K R ∣ t X x | .
Q1: How to get the camera center in world
coord from projection matrix? ==> The camera center in world coordinates is in null
space of projection matrix P=K[R|t] (use SVD to decompose P and take last row of V).
Q2: Calibrate a new camera: you have a new camera on a robot to perform Visual
Odometry, and you want to calibrate it to have more accurate estimation, describe a
procedure to do it: The underlying idea is to take a video on a scene with known
distances to create 2D-3D correspondences. For example, you can print out a square grid
that segmented with 1’ inch black and white blocks. After you identified the location of
grid, you can use it to perform calibration.
Triangulation: Given known camera projection matrix P of the same 3D point in two or
more images (x1, x2), compute the 3D coordinate of that point ==> Three approaches: 1)
Geometric approach: Find the shortest segment connecting two viewing rays, and take
the midpoint of that segment; 2) Linear: Similar to how we estimate the projection
matrix. For each matching pair of 2D points, solve the linear least square system to
triangulate the 3D position of that point. The 3D points has 3 unknown, and each
matching pairs can give us two ind equs, so 1 matching pair is enough; 3) Non-linear:
refine X that minimizes, |proj P X x | |proj P X x |

Lec 14: Single
view
measurement --
Vanishing Lines
Vanishing line:
the line that
connects two
finite vanishing
points is called the vanishing line How to compute vanishing line from two vanishing
points? Take cross product of two vanishing points, e.g., l a x b
Camera calibration using vanishing points:
- Can be solved with three orthogonal vanishing points

(at least two are finite).
- Good: No need for calibration chart, and 2D-3D

correspondences; 2) Could be completely automatic.
- Bad: 1) Only applies to certain kinds of scenes with at least two finite vanishing

points; 2) can be tricky to accurately localize vanishing points.
Measuring height from a single image: Idea: use a known height of object (R) as

reference and estimate
height of other object (H)
by using their relative
ratio of height in the
image. We first
compute all vanishing
points (𝑣 , 𝑣 , 𝑣), and
then we compute v, then t,
then H. Note: Assume the

cross ratio of height invariant to 1) the
perspective projection from 3D to 2D; 2)
permutation of points

Chap 15: Epipolar Line
Epipolar geometry setup: Baseline is line connecting two camera origins; Epipoles(e
and e’) are where the baseline intersects with two image planes; Epipolar plane is the
region formed by X, O, O’. Different X will form different epipolar planes. There is a
family of planes passing through O and O’.
Different configurations of epipolar setup:
- Converging cameras: Epipoles are visible in the image when two images formed an

angle.
- Motion parallel to image plane: Epipoles are not visible in the image, when two

images taken at a parallel line, epipolar lines parallel
- Motion perpendicular to image plane: Epipoles coincides at the principal point of

the camera, and epipolar lines algo go through the center of image.
Epipolar Constraints: 1) For a point x in an image, the corresponding point x’ in
another image must lie along the epipolar line; 2)Potential matches for x must lie on the
epipolar line 𝑙’, and matches for x’ also must lie on 𝑙 ; 3) Whenever two points x and x’
lie on the matching epipolar lies, the visual rays corresponding to them meet in space,
i.e., x and x’ are the projections of same 3D point X.
Math of epipolar constraint:
In calibrated case, we know intrinsic and extrinsic, so we can premultiply K to get

normalized image coordinates, where 𝑥 ′ 𝑡 𝑅𝑥 0 𝑥 ′ 𝐸𝑥 0, where E is 𝑡 𝑅.

Last Update: 05/16/2022, Zhengqi Dong

Property of E: 1) Ex is epipolar line associated with x; 2) 𝐸 𝑥 is the epipolar lines
associated with x’; 3) 𝐸𝑒 0, 𝐸 𝑒 0; 4)E is singular(rank 2) and has 5 DOF;
In uncalibrated case, we have to compute F, which is 𝐾 𝐸𝐾 . Property of F: First 3 is
same as E, and for last one, F is singular(rank 2) with 7 DOF. How to estimate F? We
have 𝑥 𝐹𝑥 0.
Eight-point algo: Solve least square equation, enforceing singularity by taking SVD and
drop the smallest singular value. Normalized eight-point algo. Why? 𝑥,𝑦, 𝑥 ,𝑦 are
pixel coordinates, they have different magnitude and might cause numerical instability.
Solution: transform images to a new coordinate system, the new coordinate system has
its origin at centroid of points. After translation, scale the coord so that the mean squared
distance btw origin and points is 2 pixels. Then run eight-point algo. Enforce rank 2.
Transform F back to its original unit. Suppose T and T’ are being normalized, and 𝐹
𝑇 𝐹𝑇.
 Q1: Is it possible to find the depth of 3D point Q from affine camera(aka weak
perspective or orthographic camera)? What about perspective camera? No for affine,
because all 3D objects transform to 2D image with parallel projection, so we can’t find
the depth; Yes for perspective camera, because we can do triangulation, and we have
depth(x) = Bf/(x – x).
Q2: What is an epipolar line? How is it determined? How can the concept be used to
simplify the correspondence problem in stereo vision? Epipolar lines is the line
connecting epipoles to the projection of X in other image; All epipolar lines intersect at
the epipole, so a point x in one image generates a line in the other on which its
corresponding point x’ must lie. Thus, it can help to reduce the search space for
correspondence in stereo matching.

Lec 16: SFM
Problem: Given corresponding image point(2D), x_i,j, ith point in jth frame, and we
want to find its corresponding 3D point X_j, x A X t , i 1, … , m, j 1, … , n
In practice, we can assume there is a transformation Q (a full rank 4x4 matrix), and we
can apply some constraint on it, and the observation/data/measurement matrix(D) remain
unchanged.
SFM ambiguity: SFM is not uniquely solvable, and
there are many SFM ambiguity we need to account for: 1) Projective ambiguity(No
constrain on Q): points in two images looks the same, but they were projected by
different shape of object. still preferred in practice, bez it makes the least assumption
about the world; 2) Affine ambiguity: Imposed parallelism constraint on Q. It consists
of a full rank matrix and a translation vector [𝐴, 𝑡 , 0 , 1]. 3) Similarity
ambiguity(one with the least ambiguity): Enforced orthogonality constraint, but still has
scaling ambiguity, e.g., scaled the entire scene by k and scale the camera matrices by 1/k,
the two images look same but were projected by different 3D scene. Solutions for
SFM: Affine SFM:
- Assume orthographic projection
- Input: 2D image points D Output:

Camera parameters(M) and 3D scene
points matrix (S).

- Use centering trick to eliminate one
unknown 𝐶 Basically we assume the
origin of world is at the centroid of scene
points, and we will shift(subtract) each
image point by the centroid in each view, that’s 𝒙 𝑥 ∑ 𝒙𝒊𝒌 then we

have: 𝒙 𝑨𝒊𝑿 , where each 2D points is being normalized.

- Q1: How many knowns and unknowns for m images and n points? 2mn knowns
and 8m + 3n unknowns, and we must
have 2mn ≥8m + 3n – 12, e.g., given
10 images(m=10), we need at least six
points(n>=6)

Q2: What must be the rank of data
matrix(D)? Rank(D) = Rank(MS) 𝑚𝑖𝑛 2𝑚, 3,𝑛 = 3
Q3: How to deal with missing data in the data matrix(D)? 1) Blocking method:
Decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results;
2) Incremental bilinear refinement: iterate through each dense sub-block, that
factorization, triangulation at two known cameras, and calibrate for new frame sees at
least three known 3D point.

Lec 17: Two-view stereo and depth prediction
Basic stereo matching algo: If necessary, rectify two stereo
images to transform epipolar lines into scanlines. For each pixel
in the first image, find corresponding epipolar scanline in the
right image, examine all pixels on the scanline and pick the best
match, triangulate the matches in first and second image to get
depth information, by computing disparity(x-x’), and depth(x) =
Bf/(x – x) Larger baseline: smaller triangulation error, but
matching is more difficult, and vice versa.
Local Stereo matching algorithm: Instead of matching
pixels(noisy and time consuming), we match a small window in each image. Slide a
window along the scanline and compare contents between the window of two images,
with matching criteria SSD or Cross Correlation. Effect of window size: smaller
window give us more detail but more noise; Larger window result smoother disparity
depth map but less detail. Where basic window search will fail: 1) Textureless
surfaces (无纹理表面); 2) Occlusion, repetition; 3) n on-lambertian surfaces, e.g., with
specular highlight

Non-local constraints of stereo matching: 1) Uniqueness: Each
point in one image should match at most one point in the other
image, but its uniqueness doesn’t always hold, can be affected by
the depth of point in real world; 2) Ordering: corresponding points
should appear in the same order, but the order can be affected by
depth as well; 3) Smoothness: the disparity value(x-x’) should
change slowly.
Stereograms: aka 3D lens, humans use fuse pairs of images to get
a sensation of depth.
Parallel images: image planes of camera are parallel to each
other and to the baseline; Camera centers are at the same height;
Focal length are the same; Eipolar line fall along horizontal
scanlines of the images.
Stereo image rectification: If the image planes are not parallel,
we can find a homography to project each view onto a
common plane parallel to the baseline.

Lec18: Multi-view stereo
Goal: Given arbitrary number of images(>= 2) of same object or
scene, we want to reconstruct a representation of its 3D model
(e.g., depth maps, meshes, point cloud, patch clouds, volumetric model, …). The camera
position is arbitrary, and camera calibration can be known or unknown. Useful for
reconstructing 3D disaster scene for inspection or interaction by drone photos.
Why? 1) more reference view for some points being occluded or some surfaces are
foreshortened in certain view; 2) high-res closeups of some regions; 3) Reduce errors.
Plane sweep stereo(Fast version): Sweep plane across a range of depths w.r.t. a
reference camera. For each depth plane, project each input image onto that plane using
homography, and for each pixel in the composite image stack, compute the variance. The
depth plane with the lowest variance is selected. (In practice, we will merge multiple
depth maps that was computed for each view into a volume or a mesh.
Patch-based multi-view stereo: 1)Detect keypoints; 2)Triangulate a sparse set of initial
matches; 3) Iteratively expand matches to nearby locations; 4) Use visibility constraint to
filter out false matches;5)Perform surface reconstruction

Part5: Recognition, CNNs
- (A XOR B) can be expressed as (A OR B) AND NOT(A AND B))
- z = 𝑥1 ∗ 𝑤1 𝑥2 ∗ 𝑤2 𝑏
- Activation func: f(z) = 1, if x>=2; or -1 if x <= 2; 0 otherwise

Q1: Draw a conv net with 𝑥 ∈ 𝑅 , one hidden
layer with 2x1 filters and 2 channels with stride of
2, a fully connected layer with one neuron as
output, how many params does it have? 9
params in total. Note: c0 is bias, and only fully
connected layer has bias.
Perceptron Learning rule: Cycle through training
examples; Update the weight and biased if
perceptron didn’t correctly classify the input data,
w(i+1) = w(i) + lr *y(i)*x(i) Strengthen it if it
fails to fire, weaken it if it misfired.
Learning types: Unsupervised(no labels, e.g., clustering, dimensionality reduction,
manifold learning), Semi-supervised (labels for a small portion of training data); Weakly
supervised (noisy labels, labels not exactly for the task of interest); Supervised (clean,
complete training labels for the task of interest).
Gradient descent(Update upon whole batch): cycle through the entire training set; Start
with some initial estimate of w; At each step, find ∇L(w), the gradient of the loss w.r.t.
w, and take a small step in the opposite direction: 𝒘 ← 𝒘 𝛼∇𝐿 𝒘 ; SGD Perform
parameter update for a single data point.
K-fold cross-validation: Partition the data into K groups; In each run, select one of the
groups as the validation set.
hyperparameter: “complexity” of model controlling its generalization ability, e.g.,
number of layers, number neurons/layer, regular terms? lr? epoch? …
underfitting: training and test error are both high. Caused by high bias, incapable of
capturing the import features of training data; overfitting:low training error, but high
testing error. Caused by high variance, fitting noise and unimportant charas of training
data, and perform poorly in testing data.
GAN: learn to sample from the distribution represented by the training set; 1)
Generator: learns to generate samples, to fool discriminator; 2) Discriminator: learns to
distinguish between generated and real samples
Spatial pyramids: Orderless pooling of local features over a coarse grid.
Reinforcement learning: Learn from (possibly sparse) rewards in a sequential
environment.
Active learning: The learning algorithm can choose its own training examples,
or ask a “teacher” for an answer on selected inputs.
ROI pooling: “crop and resample” fixed size representing ROI out of output of last conv
layer(use NN interpolation or max pooling)
RPN(region proposal n etwork): put an “anchor box” of fixed size over each position
in the feature map and try to predict whether this box is likely to
contain an object (can be multi-scale).
Transpose conv vs normal conv: Transpose conv is also known as deconvolution.
Transpose conv perform up-sampling to undo the previous operation, and normal conv
can only do down-sampling. Another unsampling method is max unpooling.
“Shallow” pipeline: hand-crafted feature representation followed by trainable classifier,
e.g., bad of visual words, texton models, and etc.

