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The entire visual odometry (VO) pipeline can be roughly abstracted to five steps: preparing 

image sequence, feature extraction, feature matching and filtering good features, Motion 

estimation, and pose recovery.  

 

Step 1: Image Sequence 

At the first beginning, we have an initializer will load the training images, calibration 

parameter(e.g., focal length, principal points), ground truth sequences(the actual camera pose). 

In this step, it’s helpful to convert the image data type into tensor, which will be more efficient to 

perform computation later. Also, if the data set is too big, we can use data generator instead of 

loading the whole dataset into memory. 

Step 2: Feature Extraction 

There are many features extractor available, e.g., SIFT, SURF, BRIEF, ORB, BRISK, and etc. In 

this challenge, only two feature extractors have tested: ORB and SIFT. ORB is faster, but less 

accurate and robust than SIFT. However, since the OpenCV version installed in Gradescope 

doesn’t support SIFT, so ORB is used through all the experiments. 

Note: The default number of features will be extracted is 500, but it’s often not enough. So, we 

can ask OpenCV  for more features point with parameter nfeatures, e.g., 

cv2.ORB_create(nfeatures=3000); Second, we can lower distance threshold during feature 

filtering, and this will give us more feature points and thus increase the performance in a great 

scale. 

Step3: Feature Matching + Filtering 

Two feature machers has tested: BFMatcher(brute-force macher), and FLANN based matcher.  

In term of final quality of matches, there is not much difference between two, but FLANN 

optimized performance by using nearest neighbor search and can be faster in larger datasets and 

high dimensional features, so FLANN is used throughout the experiment. (Reference: OpenCV, 

Feature Matching) 

Besides, there are some other operations has performed to improve the performance after 

FLANN macher: 1) use knnMatch to extract the top 2 matches and perform Lowe’s distance 

ratio test, which was proposed in Prof. Lowe's 2004 SIFT paper. 2) Sort the distance in 

increasing order.  

Note: Both techniques showed certain amounts of improvement. 

 

 



Step4: Motion Estimation 

Estimating fundamental matrix: Eight-point algorithm is used to estimate the fundamental 

matrix, and RANSAC is used to select the fundamental matrix that has the maximum number of 

inliers that is consistent with F within certain amount of error_threshold. A pseudo algorithm is 

shown below (credit to CMSC426 Computer Vision, Structure from Motion). 

 

 

Note: An inlier_ratio and max_no_change_time is used to speed up the algorithm. The 

inlier_ratio defind the number of inlier data points that we think is enough to define a good 

model, and max_no_change_time will stop the RANSAC algorithm if there is no any 

improvement in error after running max_no_change_time times. 

Step5: Pose Recovery 

Pose Recovery is implemented by first decomposing the essential matrix to get the rotation 

matrix and translation vector. By following the theory described here (CMSC426 Computer 

Vision, Structure from Motion), we can see that there are four possible pose configurations. 

Based on the Cheirality condition defined in this paper, we need to remove the disambiguity by 

selecting the configuration that provides the maximum number of points that has positive value 

along Z direction for all those 3D points in the camera coordinate system, and those 3D points 

can be constructed by triangulating two set of camera points with cv2.triangulatePoints function. 

The result of this implementation shown an significant improvement on the native OpenCV 

version, cv2.recoverPose().  
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