
Scaling Distributed DNN Training for Segmentation Models on Large Images

MOTIVATION

• Resurgence of Deep Learning (DL)

• Availability of Large Datasets like ImageNet and massively-parallel
modern hardware like NVIDIA GPUs

• Emergence of DL frameworks (Caffe, TensorFlow, PyTorch, etc.)

• Existing DL frameworks cannot train large Deep Neural Networks on
very-large images like WSI slides in Digital Pathology

• GPU Memory is limited so large input images makes DNN model out-
of-core (Single GPU/node is not enough!)

• Model Parallelism can be used but performance is questionable!

• Use analytical models to estimate execution time for a model split to
efficiently split the DNNs across multiple GPUs

• Use PyTorch’s Model and API to understand data flow in DNNs written
in PyTorch to implement user transparent model-splitting

• Use CPU offloading mechanism to optimize GEMS-MASTER design

RESEARCH CHALLENGES

ANALYTICAL MODEL

PROPOSED FRAMEWORK

http://hidl.cse.ohio-state.edu http://mvapich.cse.ohio-state.edu

Rayan Hamza, Nawras Alnaasan, Zhengqi Dong, and Arpan Jain
{hamza.23, alnaasan.1, dong.760, jain.575}@osu.edu

NETWORK REPRESENTATION

• Proposed framework for model splitting based on the collaboration between an analytical mode and a
network representation technique.

• Designed an analytical model for convolutional layers to estimate execution time for a model split based
on in/out channels, kernel size, and batch size.

• Designed a recursive module to represent DNN models as adjacency lists and graphs of blocks/layers and
connections between them.

• Analyzed and presented the affects of CPU offloading based on model and hardware used.

SUMMARY OF CONTRIBUTIONS

CPU OFFLOADING OF OUT-OF-CORE MODELS

• Moving some memory from
GPU to CPU during training

• I/O communication overhead

• Affected by hardware
architecture, number of
parameter.

• Time estimation of the convolutional
layer (nn.Conv2D) defined by in/out
channels, kernel size, and batch size.

• Calculate basic stats (min, median, max,
mean) by running test models.

• Predict the time of forward/backward
propagation using multivariate
polynomial curve fitting.

REPRESENTATION MODULE SOLUTION COMPARISON

PyTorch Model Traced String

Adjacency List
Graph

Representation

• No direct method to find layer/block
connections in model in PyTorch

• Using torch.jit.trace can get a string
representation of the entire forward function

• Parse string representation and create an
adjacency list.

• Visualize graph from adjacency list

• Graphing packages (TorchViz):

• No one-to-one mapping with
layers

• Introduces nodes for weights
and biases

• Shows graph for backward
propagation

• No block-level abstraction

• Solution: simpler block-level
representation with recursion
capabilities on each block.Interconnected CNN Model

Time in sec for 20 epochs on Hymenoptera dataset

mailto:awan.10%7dpanda@cse.ohio-state.edu

