
Scaling Distributed DNN Training for Segmentation Models on Large Images

MOTIVATION

• Resurgence of Deep Learning (DL)

• Availability of Large Datasets like ImageNet  and massively-parallel 
modern hardware like NVIDIA GPUs

• Emergence of DL frameworks (Caffe, TensorFlow, PyTorch, etc.)

• Existing DL frameworks cannot train large Deep Neural Networks on 
very-large images like WSI slides in Digital Pathology

• GPU Memory is limited so large input images makes DNN model out-
of-core (Single GPU/node is not enough!)

• Model Parallelism can be used but performance is questionable!

• Use analytical models to estimate execution time for a model split to 
efficiently split the DNNs across multiple GPUs

• Use PyTorch’s Model and API to understand data flow in DNNs written 
in PyTorch to implement user transparent model-splitting 

• Use CPU offloading mechanism to optimize GEMS-MASTER design 

RESEARCH CHALLENGES
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NETWORK REPRESENTATION 

• Proposed framework for model splitting based on the collaboration between an analytical mode and a 
network representation technique.

• Designed an analytical model for convolutional layers to estimate execution time for a model split based 
on in/out channels, kernel size, and batch size.

• Designed a recursive module to represent DNN models as adjacency lists and graphs of blocks/layers and 
connections between them.

• Analyzed and presented the affects of CPU offloading based on model and hardware used.

SUMMARY OF CONTRIBUTIONS

CPU OFFLOADING OF OUT-OF-CORE MODELS

• Moving some memory from 
GPU to CPU during training

• I/O communication overhead

• Affected by hardware 
architecture, number of 
parameter.

• Time estimation of the convolutional 
layer (nn.Conv2D) defined by in/out 
channels, kernel size, and batch size.

• Calculate basic stats (min, median, max, 
mean) by running test models.

• Predict the time of forward/backward 
propagation using multivariate 
polynomial curve fitting.

REPRESENTATION MODULE SOLUTION COMPARISON

PyTorch Model Traced String
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Graph 

Representation

• No direct method to find layer/block 
connections in model in PyTorch

• Using torch.jit.trace can get a string 
representation of the entire forward function

• Parse string representation and create an 
adjacency list.

• Visualize graph from adjacency list 

• Graphing packages (TorchViz):

• No one-to-one mapping with 
layers 

• Introduces nodes for weights 
and biases

• Shows graph for backward 
propagation

• No block-level abstraction 

• Solution: simpler block-level 
representation with recursion 
capabilities on each block.Interconnected CNN Model
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