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MOTIVATION NETWORK REPRESENTATION
 Resurgence of Deep Learning (DL) REPRESENTATION MODULE SOLUTION COMPARISON

* Availability of Large Datasets like ImageNet and massively-parallel

modern hardware like NVIDIA GPUs s Net2(nn.Module): e el el e R e e e |
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* Emergence of DL frameworks (Caffe, TensorFlow, PyTorch, etc.) PyTorch Model ‘ Traced String super (Net2, self). init () raphing packages (TorchViz): R ==t
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.conv2 = nn.Conv2d(6, 16, 5, padding= 2) * No one-to-one mapping with
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- _ _ .fc1 = nn.Linear(2322576, 120) * Introduces nodes for weights
* GPU Memory is limited so large input images makes DNN model out- .fc2 = nn.Linear(120, 10) and biases
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A Model Parallel . . X = X.view(-1, 2322576)
Batch Size = K | Batch Size = 1 - Dc’t ep ar: Ie * No direct method to find layer/block e e
! e rarte connections in model in PyTorch £ ' * Solution: simpler block-level
Typical CPU I . . .
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— I - O O representation of the entire forward function Interconnected CNN Model capabilities on each block.
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* Time estimation of the convolutional Approaches VGG19 VGG19 AlexNet ResNet50 | InceptionV3 m
’ayer ( nn.conv2 D) deﬁned by in /out (sky-k80) (bdw-v100) | (bdw-v100) | (bdw-v100) | (bdw-v100) Parameter

VGG19 139,578,434

CPU OFFLOADING OF OUT-OF-CORE MODELS

channels, kernel size, and batch size. '
| | - | ‘ 126 BE'S;'I;”S o' 944539 300673  24.1323  26.1702  32.2195 R e R
* Use analytical models to estimate execution time for a model split to » Calculate basic stats (min, median, max, eaNetEg 23’512’13[}
efficiently split the DNNs across multiple GPUs mean) by running test models. Naive CPU- esive D 1e,
ean) by running test models offloading 179.9194  150.5116 42.2092 113.5793  124.2807 InceptionV3 24,348,900

* Use PyTorch’s Model and APl to understand data flow in DNNs written
in PyTorch to implement user transparent model-splitting

* Predict the time of forward/backward
propagation using multivariate
polynomial curve fitting.

with pin-memory  194.5803  166.7242 47.4363 110.0957  120.2433 * Moving some memory from
GPU to CPU during training

* Use CPU offloading mechanism to optimize GEMS-MASTER design

non-blocking 179.8007  153.9791 41.5072 113.6041 123.1403 - 1/0 communication overhead

pin-memory and 194 4785  160.9983  47.5516  109.3674 119.2649 ° Affected by hardware
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z M s network representation technique.
2 = 200
( ) ? * Designed an analytical model for convolutional layers to estimate execution time for a model split based
Represent N , : : :
Part »Train \ | \/' on in/out channels, kernel size, and batch size.
"l | - \ f \ * Designed a recursive module to represent DNN models as adjacency lists and graphs of blocks/layers and
\l : || '\ \ connections between them.
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Offloading | ’ L | / k / \jf‘\// \ J  / )\u\! ‘/\\ f \\ * Analyzed and presented the affects of CPU offloading based on model and hardware used.
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