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Project Vision
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• A user-friendly distributed DNN training framework for 
model- and hybrid- parallelism for vision models. 

Problem Statement
• Design and implement a distributed DNN training 

framework in PyTorch to train out-of-core DNNs using an 
automatic model splitting module designed to improve 
performance. 
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Model Parallelism (layer-level)



Research Hypotheses
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• Use analytical models to estimate execution time for a model split to 
efficiently split DNNs across multiple GPUs

• Use PyTorch’s model and jit.trace API to understand data flow in DNNs 
written in PyTorch to implement user transparent model splitting

• Use CPU offloading mechanism to optimize GEMS-MASTER design



Automatic splitting module of DNNs - Approaches
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• Analytical Model
▪ Based on layer propagation time and parameters
▪ Critical for deciding how to split the model

• Network representation and splitting
▪ Represent model as a graph to find layer connections
▪ Decide how to split the model
▪ Segment the model and train over many machines
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Automatic splitting module of DNNs - Background Research
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• Analytical Model:

Convolution has different time overheads depending on block size, conv. 
operation(e.g. adaptive tiling), and kernel info [1]

• Network Graph Representation:

Existing tools for visualizing DNNs with PyTrorch: TensorBoard, Torchviz

Inconvenient for the purposes of the project.

[1] van Werkhoven et. al. Optimizing Convolution Operations on GPUs using Adaptive Tiling, 16 September 2013.



Analytical Model - Target Layer Times
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• Times for convolutional Layer

• nn.Conv2D(in_channels, out_channels, 
kernel_size, padding)

▪ High maximums from first/last 
iterations of model - preparation

▪ As expected, backprop is often twice 
as long as forward prop

▪ Both layers have the same kernel size, 
but different in and out channels, 
which can affect the resulting times.



Analytical Model - Conv. Layer Time Prediction
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• Prediction using polynomial curve-fitting from 
SKLearn framework.

▪ from SKLearn import PolynomialFeatures

• Time based on following parameters:

▪ In and out channels (32,64,128)

▪ Image size (square) (256px)

▪ kernel size (=3,5,7)

• Alternate model with different Conv. Layers



Analytical Model - Conv. Layer Time Prediction
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Network Representation - Parsing The Forward Function
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• No direct method to find layer/block connections in model in PyTorch

• Using torch.jit.trace can get a 
string representation of the entire 
forward function

• Parse string representation and 
create an adjacency list.

• Visualize graph from adjacency list 



Network Representation - Basic Results
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Basic CNN



Network Representation - Interconnected Models
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Interconnected CNN



Network Representation - AmoebaNet 
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Output of TorchViz Library 

Issues
1. No one-to-one mapping 

with layers 
2. Introduces nodes for 

weights and biases
3. Shows graph for backward 

propagation
4. No block-level abstraction 



Network Representation - AmoebaNet 
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AmoebaNet 6-layers

(Block-level representation)

AmoebaNet 18-layers

(Block-level representation)

Note: each block can be recursively extended to a full graph



Network Representation - Areas of improvement
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● Same layer used twice as input and output of conv2

● Logically viable, but creates cycle in graph

● Difficult to split the model using this graph

Proposed solution: duplicate layer and rename it



CPU offloading of out-of-core models
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• Research Question: 

▪ What is the optimal approach to apply CPU-offloading 
techniques for training out-of-core deep learning 
models?

• Definition:

▪ CPU-offloading: 

- Moving some memory from GPU to CPU during 
training

▪ pin_momory: 

- For data loading, passing pin_memory=True to a 
DataLoader will automatically put the fetched data 
Tensors in pinned memory, and thus enables faster 
data transfer to CUDA-enabled GPUs

▪ Nonblocking: 

- Allow asynchronous GPU copie. In other word, we 
can bypass synchronization when it is unnecessary.

• Approaches:

a. Baseline: No CPU-offloading, everything is 
trained on GPU

b. CPU-offloading without any optimization

c. CPU-offloading with pin-memory

d. CPU-offloading with non-blocking mechanism

e. CPU-offloading with pin-memory and 
non-blocking mechanism

• Notes:

▪ 1 epoch = 8 step, each step use 32 sample as 
batchsize

▪ Trained with 20 epochs, so 20 * 8 - 5= 155 
iteration (Remove the first 5 outliers)

▪ Vgg19 was tested on RI2 sky-k80, and the rest 
were tested on RI2 bdw-v100

Reference:https://developer.nvidia.com/blog/controlling-data-movement-to-boost-perform

ance-on-ampere-architecture/

https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/
https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/


CPU offloading 

Network Based Computing Laboratory 18CSE 5194.01

Table2: The total number of parameters 
contained in models.

Table1: Measures the total of training time in sec for 20 epochs on Hymenoptera dataset, 
https://download.pytorch.org/tutorial/hymenoptera_data.zip; sky-k80 refers to skylake CPU with 
TESLA K80, and bdw-v100 refers to broadwell CPU with V100.

https://download.pytorch.org/tutorial/hymenoptera_data.zip


Key Takeaway
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• CPU offloading provides the potential to train larger out-off-core models but 
also comes with the cost of I/O communication overhead.

• CPU offloading time is affected by underlying hardware architecture: 

▪ sky-k80 tripled the total training time of bdw-v100 on baseline model.

• CPU offloading time is influenced by the number of parameters in a tensor: 

▪ Fewer and denser tensors can accelerate the training.

• Optimizations help in models with more number of layers and parameters: 

▪ The CPU Offloading optimization methods have effect only on ResNet50 
and InceptionV3.



Future Work 
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• Integrate Analytical model and Network representation code to split the 
model automatically 

▪ Use network representation to get model splits at different level 
(block-level, layer-level, and module-level)

▪ Use analytical model to estimate the time for each layer/block/module  
and divide the model into splits (logically)

▪ Use model generator to create different model splits 

• Overlap CPU-offloading with computation to minimize cost and train larger 
models.

▪ Improve the performance of model-parallelism by increasing the model 
size trainable on a single GPU. 
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CPU offloading with vgg19 on sky-k80
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Table: CPU-offloading evaluation of vgg19 on RI2 sky-k80 (139,578,434 params in total)



CPU offloading with vgg19 on bdw-v100
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Table: CPU-offloading evaluation of vgg19 on RI2 bdw-v100 (139,578,434 params in total)



CPU offloading with AlexNet on bdw-v100
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Table: CPU-offloading evaluation of AlexNet on RI2 bdw-v100(57,012,034 params in total)



CPU offloading with ResNet50 on bdw-v100

Network Based Computing Laboratory 25CSE 5194.01

Table: CPU-offloading evaluation of ResNet50 on RI2 bdw-v100 (23,512,130 params in total)



CPU offloading with InceptionV3 on bdw-v100

Network Based Computing Laboratory 26CSE 5194.01

Table: CPU-offloading evaluation of InceptionV3 on RI2 bdw-v100 (24,348,900 params in total)


