
6.034 
Support Vector Machines 

Peter Szolovits

October 21, 2019

ai6034.mit.edu

Many Possible Classifiers Fit Data
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Vapnik’s Idea

• Find the 
separator 
between classes 
that maximizes 
the margin; i.e., 
is farthest from 
the nearest 
points on 
opposite sides of 
the separator
Boser, B. E., Guyon, I., & Vapnik, V. 
(1992). A Training Algorithm for 
Optimal Margin Classifiers. Colt, 144–
152. http://doi.org/
10.1145/130385.130401



Decision Rule

•  
• or  

• ( ) 

• If  
then + 

• If  
then - 

• But what are w, b?

w̄ ⋅ ū ≥ c

c = − b
w̄ ⋅ ū + b ≥ 0

w̄ ⋅ ū + b < 0 -

-

+

+

w u

SVM Constraints
• + points (definitely on + side of margin) 

•  (  if not on the boundary) 
• - points (definitely on - side of margin) 

•  
• Introduce new “outcome” variable  

•  

• Then, we can simplify both by multiplying constraints by  

•  

• or  

• and  for  in the “street”

w̄ ⋅ x̄+ + b ≥ 1 ≠

w̄ ⋅ x̄− + b ≤ − 1

yi = + 1 if + , − 1 if −
yi

yi(w̄ ⋅ x̄i + b) ≥ 1
yi(w̄ ⋅ x̄i + b) − 1 ≥ 0

yi(w̄ ⋅ x̄i + b) − 1 = 0 x̄i

How wide is the “street”?

 

 

so for , , so 
 or  

and for , , so 
 or  

so  and  
by the constraint that points in the 
street are at 0 

 

Thus, 

width = (x̄+ − x̄−) ⋅
w̄

∥w̄∥
yi(w̄ ⋅ x̄i + b) − 1 ≥ 0

x̄+ yi = + 1
w̄ ⋅ x̄+ + b − 1 ≥ 0 w̄ ⋅ x̄+ = 1 − b

x̄− yi = − 1
−w̄ ⋅ x̄i − b − 1 ≥ 0 −w̄ ⋅ x̄− = 1 + b

w̄ ⋅ x̄+ = 1 − b −w̄ ⋅ x̄− = 1 + b

(1 − b) + (1 + b) = 2

width =
2

∥w̄∥

x-

-

+

+

x+

x+–x-

w

How wide is the “street”?

 

 

so for , , so 
 or  

and for , , so 
  

or  or  

by the constraint that points in the 
“gutter” are at 0 

 

Thus, 

width = (x̄+ − x̄−) ⋅
w̄

∥w̄∥
=

w̄ ⋅ x̄+ − w̄ ⋅ x−

∥w̄∥
yi(w̄ ⋅ x̄i + b) − 1 ≥ 0

x̄+ yi = + 1
w̄ ⋅ x̄+ + b − 1 ≥ 0 w̄ ⋅ x̄+ = 1 − b

x̄− yi = − 1
−w̄ ⋅ x̄i − b − 1 ≥ 0

−w̄ ⋅ x̄− = 1 + b w̄ ⋅ x̄+ = − 1 − b

(1 − b) − (−1 − b) = 2

width =
2

∥w̄∥

x-

-

+

+

x+

x+–x-

w



Maximize width of street

• ,  

• thus want to maximize ,  

• or minimize ,  

• or minimize 

width =
2

∥w̄∥
1

∥w̄∥
∥w̄∥
1
2

∥w̄∥2

LaGrange Multipliers

• Useful to find extremum of a function under 
constraints 

 

, thus  

 

L =
1
2

∥w̄∥2 − ∑
i

λi [yi(w̄ ⋅ x̄i + b) − 1]
∂L
∂w̄

= w̄ − ∑
i

λiyix̄i = 0 w̄ = ∑
i

λiyix̄i

∂L
∂b

= − ∑
i

λiyi = 0

Plugging in What We Have Learned

 

 

• Now, “all we need do” is to find the minimum of  wrt  
• Call a numerical analyst! — quadratic optimization problem 

• Convex, thus no local extrema 
• Optimum depends only on dot products between pairs of vectors 
• Decision rule becomes: 

If  then +, else -

L =
1
2 (∑

i

λiyix̄i) ⋅ ∑
j

λjyjx̄j − (∑
i

λiyix̄i) ⋅ ∑
j

λjyjx̄j − ∑
i

λiyib + ∑
i

λi

= ∑
i

λi −
1
2 ∑

i
∑

j

λiλj yiyj x̄i ⋅ x̄j

L λi

∑
i

λiyi x̄i ⋅ ū + b ≥ 0

Vapnick’s Next Nice Idea

• Not all data are linearly separable! 
• Kernel trick handles non-linearity 
• Transform data into a higher-dimensional 

space via  

• instead of dot products  and , 
define  

• We don’t need explicit definition of !

ϕ(x̄i)
x̄i ⋅ x̄j x̄i ⋅ ū

K(x̄i, x̄j) = ϕ(x̄i) ⋅ ϕ(x̄j)
ϕ



Common Kernels

• Linear:  

• Polynomial:  

• Radial Basis:  

• Sigmoid:  

• …

x̄i ⋅ x̄j

(γ x̄i ⋅ x̄j + c)n

e−
∥x̄i − x̄j∥2

σ

tanh(γ x̄i ⋅ x̄j + c)

Kernels Can Raise Dimensionality of 
the Data
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Early Competition with ANN



Vapnick’s Ideas

• Find the separator between classes that 
maximizes the margin; i.e., is farthest 
from the nearest points on opposite sides 
of the separator 

• Kernel trick introduces non-linearity 
• Soft margins allow fitting data that are 

not fully consistent 
• Regression estimates how much does an 

item fit a category


