Support Vector Machines (send corrections to yks at csail.mit.edu)

In SVMs we are trying to find a decision boundary that maximizes the "margin" or the "width of the road" separating the
positives from the negative training data points.

To find this we minimize: é" | 2 subject to the constraints Y .i{ w-T;+b)=1

The resulting Lagrange multiplier equation we try to optimize is:
1 2 —
L= §I w|® =y, (W-x;+b)—1)
Solving the above Lagrangian optimization problem will give us w, b, and alphas, parameters that determines a unique
maximal margin (road) solution. On the maximum margin "road", the +ve, and -ve points that stride the "gutter" lines are
called support vectors. The decision boundary lies at the middle of the road. The definition of the "road" is dependent only
on the support vectors, so changing (adding deleting) non-support vector points will not change the solution. Note, that

widest "road" is a 2D concept. If the problem is in 3D we want the widest region bounded by two planes; in even higher
dimensions, a subspace bounded by two hyperplanes.

Solving for the Lagrange multiplier (¥ ;s in general requires numerical optimization methods that are beyond the scope of this
class. In practice, you use Quadratic Programming solvers. A popular algorithm for solving SVMs is Platt's SMO (Sequential
Minimal Optimization) algorithm. For SVM problems on quizzes, we generally just ask you to solve for the values of w, b
and alphas using algebra and/or geometry.

Useful Equations for solving SVM questions

A. Equations derived from optimizing the I.agrangian:
1. Partial of the Lagrangian wrtto b: From @ =

ab
E:.{l Y, = 0 Note that Y, e{—1,+1} and ;= () for non-support vectors.
Sum of all alphas (support vector weights) with their signs should add to 0.
2. Partial of the Lagrangian wrt to w: From S—L =1
i1l

For when using a linear kernel.
E:.{l Yy I,’I_‘: =W The summation only contains support vectors.
Support vectors are training data points with ¢¥ J}ﬂ

ar ohl TV — For when using a decomposable kernel (see definition
E;ﬂay;@{mr}_ w below).

Sum of alphas, ys of support vectors wrt to vector w.

B. Equations from the boundaries and constraints:
3. The Decision boundary:

General form, for any kernel.

—_ To classify an unknown 7, we compute the kernel function
h‘[l } - E :;ﬂ’ay; K'{:E, yZ)+b=>0 K(;ph:jr:}against each of the support vectors T .

Support vectors are training data points with (¥ j}[}

hZ)= 3 (7)) Z1+6>0
WMZ)=T-T+b>0

4. Positive gutter:

h‘[i‘} = Ej&,-y!- K{E:,f :H' b=1 General form, for any kernel.

h(Z)=>_ [(0y,7}) Z]+b=1

—t
v

For when using a linear kernel K[ 1_:, ?} = f, I




WME)=w-Z+b=1

For use when the Kernel is linear.

5. Negative gutter:

Zﬂf{y K(z,Z)+b=-1

WME)=w-F+b=—1

6. The width of the margin (or road)

width of road =m = Iﬁ? ” where, || =, ,’Zr‘.w}?

Alternate formula for the two support vector case:

width of road = m=— (7 4

ol

—7 )

This equation is useful when solving SVM problems in 1D or 2D, where the width of the road can be visually determined.

Common SVM Kernels:
K(up)=u v
In document classification, feature vectors are composed of binary word
features:
Linear Kernel I(word=foo) outputs 1 if the word "foo" appears in the document 0 if it does

not.

Each document is represented as [vocabulary| length feature vectors. Support
vectors found are generally particularly salient documents (documents best at
discriminating topics being classified).

Decomposable Kernels

Idea: Define ¢h{ 7i ) that transforms input
vectors into a different (usually higher)
dimensional space where the data is (more
easily) linearly separable.

K(u,7)=¢(u) ¢(7)

Example
()= [cas Uy ]
sin(uy)
K{u,ﬁ)—ccr;s(ul)cns(t_r'l)-{-sin(u_'g)sin(@)

Polynomial Kernel

m
K(u,0)=(d-v+b)" n>1
Example: Quadratic Kernel: K(ﬁ!{ﬁ} = (ﬂ -0+ E,)E

e In 2D resulting decision boundary can look parabolic, linear or

hyperbolic depending on which terms in the expansion dominate.
e Here is an expansion of the quadratic kernel, with u = [x, y]

K6~ 5}

= (v, +voy+b)?
=[(v})x2 +(v3)y2]+[b% +(2v,b)x +(2v9b )y ] +[(2v v9)zy]

HW: Try this Kemel using Professor Winston's demo

Radial Basis Function (RBF) or Gaussian

Dy
In 2D generated decision boundaries resemble contour circles around clusters
of +ve and -ve points. Support vectors are generally +ve or -ve points that

= =2
K(ﬁ,ﬁ]:exp(_ M)




Kermel

e Will fit almost any data. May exhibit
overfitting when used improperly.

e Similarto KNN but with all points
having a vote; weight of each vote
determined by Gaussian

o Points farther away get less of
a vote than points nearby

are closest to the opposing cluster. The contour space drawn results from sum
of support vector Gaussians.

HW: Try this Kermnel using Professor Winston's demo

When 2 islarge you get flatter Gaussians. When g2 is small you get
sharper Gaussians. (Hence when using a small g2 contour density will
appear closer / denser around support vector points).

Here is the Kernel in-2D expanded out, with u = [x, y]

P . 42
K(,0)=exp( _ E—0) Hy—v)
272
As a point gets closer to a support vector it approaches exp(0) = 1. As a point

Sigmoidal (tanh) Kernel
e Allows for combination of linear
decision boundaries

moves far away from a support vector it approaches exp(-infinity) = 0
K(u,5)=tanh (k-3 +b)
(k1-T+b)
- ¢ +1
K(1,0)=——————
plki-B+b)_q

Properties of tanh:
1

e Similar to the sigmoid function s(x:) = o
et

e Ranges from -1 to +1.
e tahn(x)=>+1whenx>>0
e tahn(x)=>-1 whenx <<0

Resulting decision boundaries are logical combinations of linear
boundaries. Not too different from second layer neurons in Neural Nets.

Like RBF, may exhibit overfitting when improperly used.

Linear combination of Kemels

Idea: Kernel functions are closed under
addition and scaling (by a positive number).

Scaling:
al(1,7) fora>0
or Linear combination:

K(t,0)=aK(u,5)+bK(T,5) ab>0

Method 1 of Solving SVM parameters by inspection:
This is a step-by-step solution to Problem 2.A from 2006 quiz 4:

We are given the following graph with 1 and &4 points on the x-y axis;
+ve point at x4 (0, 0) and a -ve point x, at (4, 4).

A
_x 2
b (4.4)
Y =-K+ 4
=
% N

Can a SVM separate this? i.e.is it linearly separable? Heck Yeah! using the line above.

Part 2A: Provide a decision boundary:




We can find the decision boundary by graphical inspection.

1. The decision boundary lies on the line: y=-x+4

2. We have a +ve support vector at (0, 0) with line equation y = -x

3. We have a -ve support vector at (4, 4) with line equationy = -x + 8
Given the equation for the decision boundary, we next massage the algebra to get the decision boundary to conform with the
desired form, namely:

h(Z)=wz+wyy+b>0

. y<—x+4 (<because +ve is below the line)
z+y—4<0
==Y+ 4 = () (multiplied by -1)
. —lx—1y+4 >0 (wrting out the coefficients explicitly)
Now we can read the solution from the equation coefficients:

AW N

W1:-1 W2:—1 b=4

2
Next, using our formula for width of road, we check that these weights gives a road width of: ~———— — V"E_
V—124—12
WAIT! This is clearly not the width of the "widest" road/margin.
We remember that any multiple c (c>0) of the boundary equation is still the same decision boundary. So all equations of the
form:
—cxy—cxro+4c>0
Strides this decision boundary. So here is a more general solution:

wi=-C wp=-c b=4c

or E:[:E] and h — 4¢

Using The Width of the Road Constraint
Graphically we see that the widest width margin should be: 4,/5

The solution weight vector ;i and intercept f can be solved by solving for c constrained by the known width-of-the-road.

Length of 7;j in terms of c:
|B1=y/(=c)*+(—c) =12

Now plugin all this into the margin width equation and solving for c, we get:

2 : 2 : -
— :4‘/‘3 => T:dl‘fg => E:.{lz => r_;:i
|| V2 C 1

This means the true weight vector and intercept for the SVM solution should be:

1

W= 1 andb=4-%=l

_1
1
Next we solve for alphas, using the w vector and equation 1.

E ‘:'& Jy,ﬁ =u

Plugin in the vector values of support vectors and w:

o1 (+ 1)+ (—1)T3 = ay (+1)[§ |+ ea(-1)[ | =

i || i | =

We get two identical equations:

1

16

e

Using Equation 1, now we can solve for the other alpha:



(+1)ay +(—1)ay =
) = kg = %

Part 2B: Does the boundary change if a +ve point x3 is added at (-1, -1)?

No. Support vectors are still at 1, and 2. Decision boundary stays the same.

Part 2C: What if point x; (-ve) is moved to coordinate (k, k)?

How will x values change, increase, decrease or stay same? When k =2? and k = 8?

Answer: Go back to how we solved for alphas:

ﬂl(+1)$l+ﬂ'2{_1}$2 = [:E]
ar(-1[f]=[=€]

c=kay oras=c/k

Usingthefactthat|m | - V@'C’ o= | 0 |I,"V'E
and width-of-road/margin 11 = 2 I;" | w
We express alpha in terms of the margin m:

Plugin in x,

Solving for (kg

\elul 23

] =
2 k ik
Answer:
e When k changes from 4 to 2. The margin (road width) m is halved and k is also halved. So alpha must increase by a
factor of 4.

e When k changes from 4 to 8. The margin mis doubled, k is also doubled. So alpha must decrease by a factor of 4.
Though we do not provide a full proof here. Alpha in generally changes inversely with m.
Widen road -> lower alpha. Narrowed road -> higher alpha

Method 2: Solving for alpha, b, and w without visual inspection (By computing Kernels

and solving Constraint equations)
Example from 2005 Final Exam.
In this problem you are told that you have the following points.

-ve points: A at(0,0) B at(1,1)
+ve points: C at (2,0)

and that these points lie on the gutter in the SVM max-margin solution.

Step 1. Compute all kernels function values, which in this case, these are all dot products.

K(A, A) = 0*0+0*0 = 0 K(A, B) = 0%1+0*1 = 0 K(A, C) = 0%2+0*0 = 0
K(B,A)= 1*0+1*0 =0 K(B,B)=1*1+1*1=2 K(B, C) = 1#2+1*0 = 2
K(C, A) = 2*0+0*0 = 2 K(C, B) = 2*1+0*1 = 2 K(C, C) = 2*2+0*0 = 4

Step 2: Write out the system of equations, using SVM constraints:
Constraint 1: E :aiy;' = U,

]
Constraint 2: Z,‘ﬂ ,—yf.f{(;}:‘,-,il}-l' b =+ 1 positive gutter.
Constraint 3: Z,‘ﬂ ,-yf.ﬁ'{;z:”m}—l— b = —1 negative gutter.
This will yield 4 equations.

C1 -1 [ ap+ |1 -+ |0 b= 0




C3A  |yaK@A)=-|a 4+  |ypgK®BA)=-|ag+ |y KCAE+1*2=2]c+ |1 b= |4
1+0=0 1+0=0
yaK(A,B)=- ysK(B,B)=- _ _

C3.B -+ ap+ |yKECB=+1%2=2 |+ |1 = |4
1%0=0 A 1%2=-2 ” YeK(GB) ¢ b
yAK(A,C)=- yEK(B,C)=- o

C2.C @+ ag+ |yKCCO=+1*4=a|c+ |1 = |+
1%0=0 A 1%2=-2 8 YeK(EC) ¢ b

For clarity here are the four equations:

o} (—Day+(—1ag+(+1La-+(0)b=0
C3.A {GJ(IFI‘F }('EB—FI:E}{'}:C‘F{].}I):—I
C3.B (0)a 4 +H(—2)ag+(2)a-+(1)b=—1
c2.C (0)ay +H-2)ag+(4)ac+(1)b=+1
Step 3: Use your favorite method of solving linear equations to solve for the 4 unknowns.

Answer:

Q_'A:[] .‘_}:le EI-_'C.::[ E}:—]

This is a more general way to solve SVM parameters, without the help of geometry. This method can be applied to problems
where "margin" width or boundary equation can not be derived by inspection. (e.g.> 2D)

NOTE: We used the gutter constraints as equalities above because we are told that the given points lie on the "gutter".
More realistically, if we were given more points, and not all points lay on the gutters, then we would be solving a system of
inequalities (because the gutter equations are really constraints on >= 1 or <= -1).

In the quadratic programming solvers used to solve SVMs, we are in fact doing just that, we are minimizing a target function

by subjecting it to a system of linear inequality constraints.

Example of SVMs with a Non-Linear Kernel
From Part 2E of 2006 Q4. You are given the graph below and the following kemnel:

K(u,v

and you are asked to solve for equation for the decision boundary.

Step 1: First, decompose the kernel into a dot product of ¢i(- ) functions: K { i, 7 )

=2|ufi7]
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Answer: ¢{EJ: ﬁl EI

Step 2: Convert all our original points into the new space using the transform. (We are going from 2D to 1D).
Positive points are at:

¢5Ep1] V2.0
py)=V2-1/2=
p_L}:ﬁQﬁ
Pg)=V2-1/2=2

Negatlve points are at:
@[Fg]:ﬁ':}\@:ﬁ
d(py)=d(p-)=V2-4/2=

Step 3: Plot the points in the new space, this appears as a line from 0 to 8.
With positive points at 0, 2, 4 and negative points at 6, 8.

The support vectors lie between ¢5{ p 4] and qb{ pa} (between values of 4 and 6)
Hence the decision boundary (maximum margin) should be: q_'}{:,[,'] <h
The < due to the positive points being all less than 5.

Expanding the determined decision boundary in terms of components of x, we get:

zﬁq;’mfﬂ—mgiﬁ

2(x7+x3) <25

Square both sides:

Convert to = (standard form):

—2rf{—225+25>0

(x§+x3)< >

[ =
This is a circle with radius 5 'f 1..@ — %\)‘E =2.5 dia,guna,ls a2 3.5



An Abstract Lesson on Support Vector Behavior

(0, k) y
_______ S — X
A \j C
+ +
(-s, 0) (t, 0)

Suppose you have the above set of points. Let's solve the SVM parameters by inspection.
1. Boundary equation:

]

y<E = 0z+y-2<0 > 0z—y+E>0

2. Read off the ;i and b and multiply by c (c>0):
— I
= 0 b= cr
[ ] 2

3. Now apply the width of the road/margin constraint:

width of road = B =k
aur
plugging in in length of w, and solving for c:
R 9
2 => C =
(—e) k
4. Now we have the SVM optimal solutions to w and b:
— F. " ;}
L 2k

5. Next, solve for the (¥ using the two lagrangian equations:
>0y, T = Wand E :f‘éy:' =0
]

a) From expanding the first equation, we get:

0

— & —_— U -,t p—
(+Desfg *J+(Dag[R[+(+Daclp]=| 2
which leads to two equations:
}{;—_—gor.ﬂ' _2 nd —a8+a~t=0 orcxpr = Na
—kpgh= I B_kg d A (Sh r C_(i"-) A

b) From expanding the second equation E :&éyf = [}, we get:

1
CE&[:+].]+ CEB[—].}'i‘ I:Et'n(+1]| :D or ﬂl.a-l—i_ﬂf‘ = ﬂBﬂ4(+1}+ﬂB(—1)+ﬂC(+ ].] :ﬂ

c) Putting the equations from a) and b) together we can solve for the other two alphas.

o —I—('Sja 2 ol —( ¢ )—2 d similarly for cx .cr —( X )—2!

" 4= or = and similarly for (k. = |
AT)TAT e 7 TAT et g2 yorte HC = s+t /32
We see that the two +ve support vector alphas are split based on the ratio of distances determined by sand t. If t = s were

1_1
Lr‘z_?ag

equal, then ¢ 4 = (¥ =

Observation A:
Q: Suppose we moved point A to the origin at (0, 0). What happens to €t 4 and C¥?

A: This configuration basically implies s = 0; so we get: ¢x,. = () and g = ﬁ.—-}

Conceptually, ¥ 4 now becomes the sole primary support vector because point A sits directly across from point B. Point



A takes up all the share of the "pressure" in holding up the margin; point C, though still on the gutter, effectively becomes a
non-support vector. So this implies that points on the gutter may not always serve the role of being a support vector.

Observation B:
Q: Suppose we changed k, by moving point B up/or down the y-axis what happens to the alphas?

A: All the alphas are proportional to T

If k decreases, the road narrows, the alphas increases. Analogy, the supports need to apply more "pressure" to push the
margin tighter.

If k increases, the road widens, the alphas decrease. Analogy: wider road needs less "pressure" on the supports to hold it in
place.



