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Perceptrons 
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Perceptrons 

• Architecture: one-layer feedforward net 
• Without loss of generality, consider a single-neuron 

perceptron 
 

•    
•  
•  
•  

•  
•  
•  

x1 

x2 

xm 

y1 

y2 



CSE 5526: Perceptrons 3 

Definition 
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Pattern recognition 

• With a bipolar output, the perceptron performs a 2-
class classification problem 
• E.g, apples vs. oranges 

• How do we learn to perform classification? 
• The perceptron is given pairs of input xp and desired 

output dp.  
• How can we find w so 𝑦𝑦𝑝𝑝 = 𝜑𝜑 𝑥𝑥𝑝𝑝𝑇𝑇𝑤𝑤 = 𝑑𝑑𝑝𝑝  ∀𝑝𝑝? 
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But first: decision boundary 

• Can we visualize the decision the perceptron would 
make in classifying every potential point? 

• Yes, it is called the discriminant function 

𝑔𝑔 𝑥𝑥 = 𝑥𝑥𝑇𝑇𝑤𝑤 = �𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=0

 

• What is the boundary between the two classes like? 
𝑔𝑔 𝑥𝑥 = 𝑥𝑥𝑇𝑇𝑤𝑤 = 0 

• This is a linear function of x 
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Decision boundary example 
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Decision boundary (cont.) 

• For an m-dimensional input space, the decision boundary is 
an (m ‒ 1)-dimensional hyperplane perpendicular to w. The 
hyperplane separates the input space into two halves, with 
one half having y = 1, and the other half having y = -1 
• When b = 0, the hyperplane goes through the origin 
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Linear separability 

• For a set of input patterns xp, if there exists at least 
one w that separates d = 1 patterns from d = -1 
patterns, then the classification problem is linearly 
separable 
• In other words, there exists a linear discriminant function 

that produces no classification error 
• Examples: AND, OR, XOR (see blackboard) 

• A very important concept 
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Linear separability: a more general illustration 
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Perceptron definition again 
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Perceptron learning rule 

• Learn parameters w from examples (xp, dp) 
• In an online fashion, i.e., one point at a time 
• Adjust weights as necessary, i.e. when incorrect 
• Adjust weights to be more like d=1 points and more 

like negative d=-1 points 
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Biological analogy 

• Strengthen an active synapse if the postsynaptic 
neuron fails to fire when it should have fired; 
weaken an active synapse if the neuron fires when it 
should not have fired 
• Formulated by Rosenblatt based on biological intuition 
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Quantitatively 

)()()1( nwnwnw ∆+=+

 n: iteration number, iterating over points in turn 
 η: step size or learning rate, = 1 WLOG 
 Only updates w when y(n) is incorrect 
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Geometric interpretation 

From Bishop (2006) 



CSE 5526: Perceptrons 15 

Geometric interpretation 

From Bishop (2006) 



CSE 5526: Perceptrons 16 

Geometric interpretation 
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Geometric interpretation 
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Geometric interpretation 

From Bishop (2006) 
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Geometric interpretation 

• Each weight update moves w closer to d = 1 
patterns, or away from d = -1 patterns.  

• Final weight vector in example solves the 
classification problem 

• Is that true in all cases? 
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Summary of perceptron learning algorithm 

• Definition 
• w(n): (m+1)-by-1 weight vector (including bias) at step n 

• Inputs 
• x(n): nth (m+1)-by-1 input vector with first element = 1 
• d(n): nth desired response 

• Initialization: set w(0) = 0 
• Repeat until no points are mis-classified 

• Compute response: 𝑦𝑦 𝑛𝑛 = 𝑠𝑠𝑔𝑔𝑛𝑛 𝑤𝑤 𝑛𝑛 𝑇𝑇𝑥𝑥 𝑛𝑛   
• Update: 𝑤𝑤 𝑛𝑛 + 1 = 𝑤𝑤 𝑛𝑛 + 𝑑𝑑 𝑛𝑛 − 𝑦𝑦 𝑛𝑛 𝑥𝑥(𝑛𝑛) 
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Perceptron convergence theorem 

• Theorem:  
• Assume that there exists some unit vector w0 and some α 

such that 𝑑𝑑 𝑛𝑛 𝑤𝑤0𝑇𝑇𝑥𝑥 𝑛𝑛 ≥ 𝛼𝛼 
– i.e. the data are linearly separable 

• Assume also that there exists some R such that 
𝑥𝑥 𝑛𝑛 = 𝑥𝑥 𝑛𝑛 𝑇𝑇𝑥𝑥 𝑛𝑛 ≤ 𝑅𝑅    ∀𝑛𝑛 
– i.e. the data lie within a sphere of radius R 

• Then the perceptron algorithm makes at most 𝑅𝑅
2

𝛼𝛼2
 errors 

 
• Exposition based on Collins (2012)  
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Perceptron convergence proof outline 

• Define 𝑤𝑤𝑘𝑘 as the parameter vector when the 
algorithm makes its kth error (note 𝑤𝑤1 = 0) 

• First show 𝑘𝑘𝛼𝛼 ≤ 𝑤𝑤𝑘𝑘+1  by induction 
• Second show 𝑤𝑤𝑘𝑘+1 2 ≤ 𝑘𝑘𝑅𝑅2 by induction 

• Then it follows that 𝑘𝑘 ≤ 𝑅𝑅2

𝛼𝛼2
  

• I.e., the perceptron makes a finite number of errors 
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First show 𝑘𝑘𝛼𝛼 ≤ 𝑤𝑤𝑘𝑘+1  by induction 

• Assume that the kth error is made on example n 
• Because of the perceptron update rule, 

 𝑤𝑤𝑘𝑘+1𝑇𝑇 𝑤𝑤0 = 𝑤𝑤𝑘𝑘 + 𝑑𝑑 𝑛𝑛 𝑥𝑥 𝑛𝑛 𝑇𝑇𝑤𝑤0 
= 𝑤𝑤𝑘𝑘𝑇𝑇𝑤𝑤0 + 𝑑𝑑 𝑛𝑛 𝑥𝑥 𝑛𝑛 𝑇𝑇𝑤𝑤0 
≥ 𝑤𝑤𝑘𝑘𝑇𝑇𝑤𝑤0 + 𝛼𝛼 

• Because, by assumption, 𝑑𝑑 𝑛𝑛 𝑥𝑥 𝑛𝑛 𝑇𝑇𝑤𝑤0 ≥ 𝛼𝛼 
• Then, by induction on k, 𝑤𝑤𝑘𝑘+1𝑇𝑇 𝑤𝑤0 ≥ 𝑘𝑘𝛼𝛼 
• In addition, 𝑤𝑤𝑘𝑘+1 ⋅ 𝑤𝑤0 ≥ 𝑤𝑤𝑘𝑘+1𝑇𝑇 𝑤𝑤0 by Cauchy-

Schwartz, with 𝑤𝑤0 = 1 
• Thus, 𝑤𝑤𝑘𝑘+1 ≥ 𝑤𝑤𝑘𝑘+1𝑇𝑇 𝑤𝑤0 ≥ 𝑘𝑘𝛼𝛼 
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Second show 𝑤𝑤𝑘𝑘+1 2 ≤ 𝑘𝑘𝑅𝑅2 by induction 

• Because of the perceptron update rule 
𝑤𝑤𝑘𝑘+1 2 = 𝑤𝑤𝑘𝑘 + 𝑑𝑑 𝑛𝑛 𝑥𝑥 𝑛𝑛 2 
𝑤𝑤𝑘𝑘+1 2 = 𝑤𝑤𝑘𝑘 2 + 𝑑𝑑2 𝑛𝑛 𝑥𝑥 𝑛𝑛 2 

    +2𝑑𝑑 𝑛𝑛 𝑥𝑥 𝑛𝑛 𝑇𝑇𝑤𝑤𝑘𝑘 
• By definition, 𝑑𝑑2 𝑛𝑛 = 1 
• By assumption, 𝑥𝑥 𝑛𝑛 2 ≤ 𝑅𝑅2 
• Because the nth point was misclassified 

2𝑑𝑑 𝑛𝑛 𝑥𝑥 𝑛𝑛 𝑇𝑇𝑤𝑤𝑘𝑘 ≤ 0  
• Thus, 𝑤𝑤𝑘𝑘+1 2 ≤ 𝑤𝑤𝑘𝑘 2 + 𝑅𝑅2 
• And, by induction on k, 𝑤𝑤𝑘𝑘+1 2 ≤ 𝑘𝑘𝑅𝑅2 
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Then it follows that 𝑘𝑘 ≤ 𝑅𝑅2/𝛼𝛼2 

• We have shown  
𝑘𝑘𝛼𝛼 ≤ 𝑤𝑤𝑘𝑘+1  and 𝑤𝑤𝑘𝑘+1 2 ≤ 𝑘𝑘𝑅𝑅2 

• So, 𝑘𝑘2𝛼𝛼2 ≤ 𝑤𝑤𝑘𝑘+1 2 ≤ 𝑘𝑘𝑅𝑅2 

• Then it follows that 𝑘𝑘 ≤ 𝑅𝑅2

𝛼𝛼2
 

• Thus the perceptron learning algorithm makes a 
bounded number of mistakes, i.e., converges 
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Perceptron learning remarks 

• If the data are not linearly separable 
• Algorithm will iterate forever 

• Scaling w does not affect the perceptron’s decision 
• So the learning rate, η, does not affect the perceptron’s 

decision either, and can be set to 1 
• The solution weight vector, w, is not unique 
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Generalization 

• Performance of a learning machine on test patterns 
not used during training 

• Perceptrons generalize by deriving a decision 
boundary in the input space. Selection of training 
patterns is thus important for generalization 
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