
Artificial Intelligence

Intro to Neural Networks
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How the Brain Works (sort of)

• Neuron is fundamental functional unit
– Soma: cell body
– Axon: long single fiber that connects to other neurons
– Dendrites: connected to axons from other neurons
– Synapse: connecting junction
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How the Brain Works

• Signals propagated between neurons by 
electrochemical reaction
– Chemical substances released from synapses 

and enter dendrite, raising or lowering electric 
potential of cell body

• Synapses that increase potential are excitatory
• Synapses that decrease potential are inhibitory

– Action potential (electrical pulse) sent down 
axon when electric potential of cell body 
reaches a threshold
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How the Brain Works

• A collection of simple cells can lead to 
thought, action, and consciousness
– Bottom-up statement
– Long way from a theory of consciousness
– “Brains cause minds” (Searle 1992)



Neural Networks
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Neural Networks
• Neural net is composed of nodes (units) 

– Some connected to outside world as input or output units
• Nodes are connected by links

– Input and output links
• Each link has numeric weight associated with it

– Primary means of long-term storage/memory
– Weights are modified to bring network’s input/output 

behavior to goal response
• Nodes have activation level

– Given its inputs and weights
– Local computation based on inputs from neighbors (no 

global control)
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Using Neural Networks

• One must first decide 
– How many nodes to use
– What kind of nodes are appropriate
– How nodes are to be connected into a network

• Weights are randomly initialized, then training 
learns correct weight values given a particular set 
of training examples
– Input examples are labeled with correct outputs
– One must decide how to encode examples in terms of 

network inputs and outputs
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Simple Computing Elements

• Each unit performs simple computation
– Receives signals from input links
– Computes new activation level
– Sends activation level along each output link

• Computation split into two components
– Linear input function

• Computes weighted sum of inputs
– Nonlinear activation function

• Transforms weighted sum into final activation value 
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Simple Computing Elements
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Types of Activation Functions

Non-linear functions!
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Boolean Functions Using 
Step Activation Function

AND

T = 1.5

W = 1

W = 1

OR

T = 0.5

W = 1

W = 1

NOT

T = -0.5W = -1
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Network Structures
• Two main varieties

– Feed-forward
• Unidirectional links with no cycles
• Directed acyclic graph (DAG)

– Recurrent
• Links can form arbitrary topologies
• Contains cycles
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Network Structures
• Feed-forward networks have no internal state 

(other than weight values)
– Simply computes function of input values using 

weights

• Not like the brain!
– We have memory
– Many back connections

Two-layer, feed-forward network
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Network Structures

5 3,5 1,3 1 2,3 2 4,5 1,4 1 2,4 2( ( ) ( ))O g W g W a W a W g W a W a= ⋅ + + ⋅ +
Network calculates function (g is nonlinear activation):

Two-layer, feed-forward network
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Learning just becomes a process of tuning 
parameters to fit data in training set!!!
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Network Structures
• Input units

– Value of each unit determined by environment
• Output units
• Hidden units

– Internal units that are neither input or output units
– (Perceptrons have no hidden units)

• Multilayer networks
– Networks with one or more layers of hidden units
– One hidden layer

• Theoretically can represent any continuous function of the 
inputs

– Two hidden layers
• Theoretically can represent even discontinuous functions
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Optimal Network Structure

• Neural networks are subject to overfitting
– When use too many parameters (weights) in 

model
– Cross validation techniques are useful for 

determining right size of network
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Perceptrons
• First studied in late 1950’s
• Single-layer, feed-forward network

jI ,i jW iO

Perceptron 
Network

jI jW O

Single 
Perceptron
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Perceptrons

• Step activation of output unit for (single) 
perceptron (I0 = -1, W0 = threshold)

• Perceptrons represent functions that are linearly 
separable ***

𝑂𝑂 = Step0 �
𝑗𝑗

𝑊𝑊𝑗𝑗 𝐼𝐼𝑗𝑗 = Step0 𝑾𝑾 � 𝑰𝑰



Dividing the Space (+,-)
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• Consider, 2 inputs: x, y

• The threshold of Step() is 0, so the important 
aspect: Is the input to step above or below 0?

𝑂𝑂 = Step0 𝑾𝑾 � 𝑰𝑰 = Step0 1 −𝑚𝑚 𝑏𝑏 �
𝑦𝑦
𝑥𝑥
−1= Step0 𝑦𝑦 −𝑚𝑚𝑥𝑥 − 𝑏𝑏

𝑦𝑦 −𝑚𝑚𝑥𝑥 − 𝑏𝑏 ≥ 0
𝑦𝑦 −𝑚𝑚𝑥𝑥 − 𝑏𝑏 < 0? 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏

Decision boundary



Dividing the Space (+,-)
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Linear Separability in Perceptrons

I1

I2

I1

I2

I1

I2

?

I1   AND I2 I1   OR I2 I1   XOR I2

“A perceptron can represent a function only if some 
line can separate all white dots from black dots”

Limited in Boolean functions they can represent
AND, OR,     but not XOR



Linear Classifiers

• Multiple Perceptron solutions to separate positive and 
negative examples
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Perceptron Learning Algorithm

• Initially assign random weights [-0.5…0.5]
• Update network to try to make consistent 

with examples
– Make small adjustments in weights to reduce 

difference between observed and predicted 
values

– Updating process divided into “epochs”
• Epoch involves updating all weights for all 

examples
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Weight Updating via Gradient Descent
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Error function:

Desired output value Perceptron output value

Note that g’() is omitted from 
“threshold” perceptrons
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Perceptron Learning

• Perceptron convergence theorem is doing 
gradient descent through the weight space

• Perceptrons, by Minsky and Papert 1969
– Clearly demonstrated the limits of linearly 

separable functions
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Multilayer Feed-Forward 
Networks
Output unit Oi

Wj,i

“Hidden” units aj

Wk,j

Input units Ik
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Learning in Multilayer 
Feed-Forward Networks

• Back-propagation learning algorithm
– Assess blame for an error and divide it 

“locally” among contributing weights (divide 
contribution of each weight) and update layer 
by layer backwards



Support Vector Machines (SVMs)

• Discriminative classifier 
based on optimal 
separating hyperplane
(i.e., line for 2D case)

• Maximize the margin
between the positive and 
negative training examples

< -1

> 1



Non-Linear SVMs: Feature Spaces

• General idea: The original input space is mapped to some 
higher-dimensional feature space where the training set is 
more likely to be linearly separable:

Φ:  x → φ(x)
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Summary
• Neural net

– Nodes, links, weights, activation level
• Each unit performs simple computation

– Receives signals from input links
– Computes new activation level
– Sends activation level along each output link

• Feed-forward network
– Unidirectional links with no cycles

• Perceptrons
– Single-layer, feed-forward network
– Represent functions that are linearly separable

• Back-propagation for multilayer networks
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