Artificial Intelligence

Intro to Machine Learning

Programming Style Shifts

- Standard CS: Explicitly program computer to do something
- Early AI: Derive a problem description (state) and use general algorithms to solve it
 - Search: derive a search state, successors
 - Logic: state facts as sentences, use logical inference rules to derive consequences
 - Planning: create initial state, goal state and action schemas, use forward-chaining and backward-chaining to create plans

Learning

- Now we try something different
 - Instead of giving the agent a state description, we "characterize" the set of states
 - Agent must learn what a state is

What is "Learning"?

- Agent improves performance with experience
 - Discover "relationships" between input and state/output
 - What features are best in mapping input to output?
 - Need to recognize what's important and what is not
 - Discover properties of the environment

What can be Learned?

- Clusters
 - Find useful groupings of data (e.g. height/weight)
- Classifications
 - Identify hand-written digits
 - Filter mail into spam/not-spam
 - Detect a face in a pic
- Actions
 - Robot balances upright on two legs
 - Autopilot flies level
 - Vehicle stays in lane
 - Locate a face in a pic

Cluster/Grouping Learning Problems

Cluster/Grouping Learning Problems

How many "groups" and who belongs to which group?

"Unsupervised" Learning

K-Means

("Grouping/Clustering")

- One of the <u>simplest</u> clustering algorithms, yet widely employed
- <u>Given</u> initial set of *K* centroids/means (generally obtained through initialization with random data points or locations):
 - Assign each point to closest (generally Euclidean) centroid
 - Recompute centroid locations based on current assignments
 - Repeat until convergence or maximum number of iterations
- Works well under constrained conditions
 - Seeding (initial centroids), cluster shapes

Demonstration of the standard algorithm

k initial "means" (in this case k=3) are randomly generated within the data domain (shown in color).

 k clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

3) The centroid of each of the *k* clusters becomes the new mean.

4) Steps 2 and 3 are repeated until convergence has been reached.

K-Means – Appropriate Seeding

K-Means – Appropriate Seeding

K-Means – Inappropriate Seeding

K-Means – Inappropriate Seeding

K-Means – Comments

- Results dependent on initial conditions
 - Often run multiple times and keep clustering minimizing sum of squared distances (points to centroids)
- Need to know number of clusters *K a priori*
- Does not always perform well

K-Means – Uses

- Works well when clusters are compact and well-separated
- Often used to compress data into "prototypes" or "codewords"
 - Set K to be sufficiently large

"Supervised" Learning

Learning

Courtesy NASA/JPL-Caltech

"Supervised" Learning

Supervised Learning

- Given: training data
 - Set of data with corresponding class labels
 - Needs to be representative of entire dataset
- Objective: build a classifier to predict output labels (classes) of data in unseen test set
 - Need to infer a function that separates the data into desirable classes
 - No single algorithm works best on all datasets
 - May need to tune algorithm parameters
 - Feature representation is important

Supervised Learning Process

- Split data into training and testing sets
- Determine features to employ
- Select a classifier
- Train the classifier using the <u>training set</u>
- Classify the <u>test set</u>
- Evaluate the classification results

Evaluating Supervised Learning

- Training data must be selected so as to reflect the global data pool
- Testing on <u>unseen data</u> is crucial to prevent *overfitting* to the training data
 - Unintended correlations between input and output
 - e.g., photos with tanks taken on sunny days
 - Correlations specific to the set of training data
 - e.g., language processing trained on Wall Street Journal or CNN transcripts may not work well for spoken conversation

Training Classifiers

- How to tune algorithm parameters?
 - -"Validation"
 - Train classifier on a subset of the training data
 - Test the classifier on the remaining training data
 - Called the validation set
 - Tune the classifier to minimize the error on the validation set

Training Classifiers (continued)

- How to tune? (continued)
 - m-Fold Cross-Validation
 - Set classifier options
 - e.g., number of parameters, model form, training time, input features,
 etc.
 - Estimate generalized classifier performance
 - Randomly divide training set into m disjoint sets of equal size
 - Train using (m-1) subsets and validate on the remaining subset
 - Repeat *m* times, using different validation set each time
 - Average results
 - Repeat entire process for different classifier options and choose the options which maximize the average results

Evaluation

- Accuracy = $\frac{\text{Number of correct classifications}}{\text{Number of classifications}}$
- Consider the case where we are trying to detect instances of class X within a dataset containing instances from X and Y
 - True Positive (TP) Correctly classifying an instance of X as X
 - False Positive (FP) Incorrectly classifying an instance of Y as X
 - False alarm or Type I error
 - True Negative (TN) Correctly classifying an instance of Y as Y
 - False Negative (FN) Incorrectly classifying an instance of X as Y
 - Misdetection or Type II error

Evaluation

- Precision = $\frac{\text{Number of correctly detected events}}{\text{Number of detected events}} = \frac{\text{TP}}{\text{TP} + \text{FP}}$
 - For low values, the algorithm is saying "yes" in many cases where it shouldn't (false positives)
 - It is not being as *precise* as it should be in saying "yes"
- Recall = $\frac{\text{Number of correctly detected events}}{\text{True number of events}} = \frac{\text{TP}}{\text{TP} + \text{FN}}$
 - For low values, the algorithm is not saying "yes" everywhere it should (false negatives)
 - It is not recalling every "yes" it should
- F_{β} Measure = $(1+\beta^2) \cdot \frac{\text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}}$
 - Common to use $\beta = 1$ Harmonic mean between precision and recall

k-NN

k-Nearest Neighbor

- One of the simplest classification strategies
- Algorithm:
 - Compute <u>distance</u> from test sample to labeled training samples
 - Assign test sample the label most common across
 the first k nearest neighbors from the training data
 - k typically small and odd numbered (no ties)

K=1 yields X is class oK=3 yields X is class +K=5 yields X is class o

Decision Tree

Decision Trees

- Input: Feature vectors
- Output: Classification of input vector
- Learns by subdividing the data into clusters with same properties
- Good at determining which features are good discriminators

Decision Tree

- Classify pattern through sequence of questions
- Easy to interpret

CART

- <u>Classification and Regression Trees (CART)</u>
 - General framework for creating decision trees
- Common questions:
 - 1. How many splits at each node?
 - 2. Which property should be tested at node?
 - 3. When should the tree stop?
 - 4. Can "large" trees be pruned (to make smaller)?

1) How Many Splits?

• Every <u>non-binary</u> decision can be represented as <u>combination of binary</u> decisions

2) Which Property to Test?

- Prefer decisions that lead to simplest tree (Occam's Razor)
 - Want property to split data into "purest" groups possible
 - Use <u>impurity</u> measures

Proportion of patterns at node Node N that belong to class
$$\omega_j$$

Entropy Impurity $i(N) = -\sum_j P(\omega_j) \log_2 P(\omega_j)$

• Choose decision at node *N* that <u>decreases</u> impurity the most

3) When to Stop Splitting?

- Four different techniques:
 - 1. Continue splitting until training error on validation data is minimized
 - 2. Below threshold value in impurity reduction
 - 3. Minimize cost function balancing tree size and impurity
 - 4. Test statistical significance of impurity reduction

4) How to Prune Large Trees?

- Methods to determine when to stop splitting may declare a node a leaf too early
- Alternative: grow tree out entirely (each leaf perfectly pure) and then prune
- Pruning:
 - Work bottom-up
 - Compute the increase in impurity if two child nodes linked to common parent node are eliminated
 - Merge if increase is negligible

Lastly Assign Categories to Leaf Nodes

- Simplest approach is to take majority vote of class labels at leaf node
 - Ideally there will be one dominant class
- Potential options when tie occurs:
 - Random assignment
 - Take into account priors
 - Take into account classification risks
 - Cost of misdetections or false alarms of categories

Example

TASK: Build decision tree to represent these two data clusters/classes. (Then can push new "unlabeled" point into tree to determine its class.)

Example – Decision Tree (Matlab)

Mostly Full Tree (nodes must have at least 10 observations to be split)

Slightly Pruned Tree

Moderately Pruned Tree

Heavily Pruned Tree

Results from test data

Summary

- Unsupervised learning
 - K-Means
- Supervised learning
 - Training and evaluation
 - -k-NN
 - Majority vote of nearest neighbors in training data
 - Decision Trees
 - CART