
Artificial Intelligence

Intro to Machine Learning



Programming Style Shifts
• Standard CS: Explicitly program computer to do 

something
• Early AI: Derive a problem description (state) and 

use general algorithms to solve it
– Search: derive a search state, successors
– Logic: state facts as sentences, use logical inference 

rules to derive consequences
– Planning: create initial state, goal state and action 

schemas, use forward-chaining and backward-chaining 
to create plans



Learning

• Now we try something different
– Instead of giving the agent a state description, we 

“characterize” the set of states
– Agent must learn what a state is



What is “Learning”?

• Agent improves performance with experience
– Discover “relationships” between input and 

state/output
• What features are best in mapping input to output?
• Need to recognize what’s important and what is not

– Discover properties of the environment



What can be Learned?
• Clusters

– Find useful groupings of data (e.g. height/weight)
• Classifications

– Identify hand-written digits
– Filter mail into spam/not-spam
– Detect a face in a pic

• Actions
– Robot balances upright on two legs
– Autopilot flies level
– Vehicle stays in lane
– Locate a face in a pic



Cluster/Grouping Learning 
Problems



Cluster/Grouping Learning 
Problems

How many “groups” and 
who belongs to which group?



“Unsupervised” Learning



K-Means 
(“Grouping/Clustering”)

• One of the simplest clustering algorithms, yet widely 
employed

• Given initial set of K centroids/means (generally 
obtained through initialization with random data 
points or locations):
– Assign each point to closest (generally Euclidean) centroid
– Recompute centroid locations based on current assignments
– Repeat until convergence or maximum number of iterations

• Works well under constrained conditions
– Seeding (initial centroids), cluster shapes





K-Means – Appropriate Seeding



K-Means – Appropriate Seeding



K-Means – Inappropriate Seeding



K-Means – Inappropriate Seeding



K-Means – Comments

• Results dependent on initial conditions
– Often run multiple times and keep clustering 

minimizing sum of squared distances (points to 
centroids)

• Need to know number of clusters K a priori
• Does not always perform well



K-Means – Uses

• Works well when clusters are compact and 
well-separated

• Often used to compress data into “prototypes” 
or “codewords”
– Set K to be sufficiently large



“Supervised” Learning



Learning

Courtesy NASA/JPL-Caltech

Hmmm… which objects
are boxes?



“Supervised” Learning

Courtesy NASA/JPL-Caltech

Hmmm… which objects
are boxes?

yes yesno no no



Supervised Learning

• Given: training data
– Set of data with corresponding class labels
– Needs to be representative of entire dataset

• Objective: build a classifier to predict output labels 
(classes) of data in unseen test set
– Need to infer a function that separates the data into desirable 

classes
– No single algorithm works best on all datasets
– May need to tune algorithm parameters
– Feature representation is important



Supervised Learning Process

• Split data into training and testing sets
• Determine features to employ
• Select a classifier
• Train the classifier using the training set 
• Classify the test set
• Evaluate the classification results



Evaluating Supervised Learning

• Training data must be selected so as to reflect 
the global data pool

• Testing on unseen data is crucial to prevent 
overfitting to the training data
– Unintended correlations between input and output

• e.g., photos with tanks taken on sunny days
– Correlations specific to the set of training data

• e.g., language processing trained on Wall Street Journal 
or CNN transcripts may not work well for spoken 
conversation



Training Classifiers

• How to tune algorithm parameters?
– “Validation”

• Train classifier on a subset of the training data
• Test the classifier on the remaining training data 

– Called the validation set

• Tune the classifier to minimize the 
error on the validation set



Training Classifiers (continued)

• How to tune? (continued)
– m-Fold Cross-Validation

• Set classifier options 
– e.g., number of parameters, model form, training time, input features, 

etc.

• Estimate generalized classifier performance
– Randomly divide training set into m disjoint sets of equal size
– Train using (m-1) subsets and validate on the remaining subset
– Repeat m times, using different validation set each time
– Average results

• Repeat entire process for different classifier options and 
choose the options which maximize the average results



Evaluation
• Accuracy =

• Consider the case where we are trying to detect instances of 
class X within a dataset containing instances from X and Y
– True Positive (TP) – Correctly classifying an instance of X as X
– False Positive (FP) – Incorrectly classifying an instance of Y as X

• False alarm or Type I error

– True Negative (TN) – Correctly classifying an instance of Y as Y
– False Negative (FN) – Incorrectly classifying an instance of X as Y 

• Misdetection or Type II error

tionsclassifica ofNumber 
tionsclassificacorrect  ofNumber 



Evaluation

• Precision = 
– For low values, the algorithm is saying “yes” in many cases where it shouldn’t 

(false positives)
– It is not being as precise as it should be in saying “yes”

• Recall =
– For low values, the algorithm is not saying “yes” everywhere it should (false 

negatives)
– It is not recalling every “yes” it should

• Fβ – Measure = 

– Common to use β = 1 → Harmonic mean between 
precision and recall
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k-NN



k-Nearest Neighbor

• One of the simplest classification strategies
• Algorithm:

– Compute distance from test sample to labeled 
training samples

– Assign test sample the label most common across 
the first k nearest neighbors from the training data

• k typically small and odd numbered (no ties)
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Decision Tree



Decision Trees

• Input: Feature vectors
• Output: Classification of input vector
• Learns by subdividing the data into clusters 

with same properties
• Good at determining which features are good 

discriminators



Decision Tree

• Classify pattern through sequence of questions
• Easy to interpret 

Branches

Leaf nodes 



CART

• Classification and Regression Trees (CART)
– General framework for creating decision trees

• Common questions:
1. How many splits at each node?
2. Which property should be tested at node? 
3. When should the tree stop?
4. Can “large” trees be pruned (to make smaller)?



• Every non-binary decision can be represented as 
combination of binary decisions

1) How Many Splits?

x

x
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x < 1



2) Which Property to Test?
• Prefer decisions that lead to simplest tree (Occam’s Razor)

– Want property to split data into “purest” groups possible
– Use impurity measures

• Choose decision at node N that decreases impurity the most

– Maximize
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3) When to Stop Splitting?

• Four different techniques:
1. Continue splitting until training error on validation data is 

minimized
2. Below threshold value in impurity reduction
3. Minimize cost function balancing tree size and impurity
4. Test statistical significance of impurity reduction



4) How to Prune Large Trees?

• Methods to determine when to stop splitting may 
declare a node a leaf too early

• Alternative: grow tree out entirely (each leaf perfectly 
pure) and then prune

• Pruning:
– Work bottom-up
– Compute the increase in impurity if two child nodes linked 

to common parent node are eliminated 
– Merge if increase is negligible



Lastly Assign Categories to Leaf Nodes

• Simplest approach is to take majority vote of class 
labels at leaf node
– Ideally there will be one dominant class

• Potential options when tie occurs:
– Random assignment
– Take into account priors 
– Take into account classification risks 

• Cost of misdetections or false alarms of categories



Example
TASK:  Build decision tree to represent these two data clusters/classes.
(Then can push new “unlabeled” point into tree to determine its class.)



Example – Decision Tree (Matlab)
Mostly Full Tree (nodes must have at least 10 observations to be split)

x < -2.11751  or  x ≥ -2.11751

y < -1.14354  or  y ≥ - 1.14354



Example – Decision Tree
Slightly Pruned Tree



Example – Decision Tree
Moderately Pruned Tree



Example – Decision Tree
Heavily Pruned Tree 



Example – Decision Tree
Mostly Full Tree

Accuracy = 0.9635

Slightly Pruned Tree

Accuracy = 0.9655

Moderately Pruned Tree 

Accuracy = 0.9670

Highly Pruned Tree 

Accuracy = 0.9165

Results from test data

Overfit to training data

Not enough decisions

Unlabeled test data



Summary

• Unsupervised learning
– K-Means

• Supervised learning
– Training and evaluation
– k-NN

• Majority vote of nearest neighbors in training data

– Decision Trees
• CART
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