
Artificial Intelligence

Intro to Machine Learning

Programming Style Shifts
• Standard CS: Explicitly program computer to do

something
• Early AI: Derive a problem description (state) and

use general algorithms to solve it
– Search: derive a search state, successors
– Logic: state facts as sentences, use logical inference

rules to derive consequences
– Planning: create initial state, goal state and action

schemas, use forward-chaining and backward-chaining
to create plans

Learning

• Now we try something different
– Instead of giving the agent a state description, we

“characterize” the set of states
– Agent must learn what a state is

What is “Learning”?

• Agent improves performance with experience
– Discover “relationships” between input and

state/output
• What features are best in mapping input to output?
• Need to recognize what’s important and what is not

– Discover properties of the environment

What can be Learned?
• Clusters

– Find useful groupings of data (e.g. height/weight)
• Classifications

– Identify hand-written digits
– Filter mail into spam/not-spam
– Detect a face in a pic

• Actions
– Robot balances upright on two legs
– Autopilot flies level
– Vehicle stays in lane
– Locate a face in a pic

Cluster/Grouping Learning
Problems

Cluster/Grouping Learning
Problems

How many “groups” and
who belongs to which group?

“Unsupervised” Learning

K-Means
(“Grouping/Clustering”)

• One of the simplest clustering algorithms, yet widely
employed

• Given initial set of K centroids/means (generally
obtained through initialization with random data
points or locations):
– Assign each point to closest (generally Euclidean) centroid
– Recompute centroid locations based on current assignments
– Repeat until convergence or maximum number of iterations

• Works well under constrained conditions
– Seeding (initial centroids), cluster shapes

K-Means – Appropriate Seeding

K-Means – Appropriate Seeding

K-Means – Inappropriate Seeding

K-Means – Inappropriate Seeding

K-Means – Comments

• Results dependent on initial conditions
– Often run multiple times and keep clustering

minimizing sum of squared distances (points to
centroids)

• Need to know number of clusters K a priori
• Does not always perform well

K-Means – Uses

• Works well when clusters are compact and
well-separated

• Often used to compress data into “prototypes”
or “codewords”
– Set K to be sufficiently large

“Supervised” Learning

Learning

Courtesy NASA/JPL-Caltech

Hmmm… which objects
are boxes?

“Supervised” Learning

Courtesy NASA/JPL-Caltech

Hmmm… which objects
are boxes?

yes yesno no no

Supervised Learning

• Given: training data
– Set of data with corresponding class labels
– Needs to be representative of entire dataset

• Objective: build a classifier to predict output labels
(classes) of data in unseen test set
– Need to infer a function that separates the data into desirable

classes
– No single algorithm works best on all datasets
– May need to tune algorithm parameters
– Feature representation is important

Supervised Learning Process

• Split data into training and testing sets
• Determine features to employ
• Select a classifier
• Train the classifier using the training set
• Classify the test set
• Evaluate the classification results

Evaluating Supervised Learning

• Training data must be selected so as to reflect
the global data pool

• Testing on unseen data is crucial to prevent
overfitting to the training data
– Unintended correlations between input and output

• e.g., photos with tanks taken on sunny days
– Correlations specific to the set of training data

• e.g., language processing trained on Wall Street Journal
or CNN transcripts may not work well for spoken
conversation

Training Classifiers

• How to tune algorithm parameters?
– “Validation”

• Train classifier on a subset of the training data
• Test the classifier on the remaining training data

– Called the validation set

• Tune the classifier to minimize the
error on the validation set

Training Classifiers (continued)

• How to tune? (continued)
– m-Fold Cross-Validation

• Set classifier options
– e.g., number of parameters, model form, training time, input features,

etc.

• Estimate generalized classifier performance
– Randomly divide training set into m disjoint sets of equal size
– Train using (m-1) subsets and validate on the remaining subset
– Repeat m times, using different validation set each time
– Average results

• Repeat entire process for different classifier options and
choose the options which maximize the average results

Evaluation
• Accuracy =

• Consider the case where we are trying to detect instances of
class X within a dataset containing instances from X and Y
– True Positive (TP) – Correctly classifying an instance of X as X
– False Positive (FP) – Incorrectly classifying an instance of Y as X

• False alarm or Type I error

– True Negative (TN) – Correctly classifying an instance of Y as Y
– False Negative (FN) – Incorrectly classifying an instance of X as Y

• Misdetection or Type II error

tionsclassifica ofNumber
tionsclassificacorrect ofNumber

Evaluation

• Precision =
– For low values, the algorithm is saying “yes” in many cases where it shouldn’t

(false positives)
– It is not being as precise as it should be in saying “yes”

• Recall =
– For low values, the algorithm is not saying “yes” everywhere it should (false

negatives)
– It is not recalling every “yes” it should

• Fβ – Measure =

– Common to use β = 1 → Harmonic mean between
precision and recall

FPTP
TP

events detected ofNumber
events detectedcorrectly ofNumber

+
=

FNTP
TP

events ofnumber True
events detectedcorrectly ofNumber

+
=

()
 RecallPrecision

RecallPrecision1 2
2

+⋅
⋅

⋅+
β

β

k-NN

k-Nearest Neighbor

• One of the simplest classification strategies
• Algorithm:

– Compute distance from test sample to labeled
training samples

– Assign test sample the label most common across
the first k nearest neighbors from the training data

• k typically small and odd numbered (no ties)

K=1 yields X is class o
K=3 yields X is class +
K=5 yields X is class o

+
+

+
+

+ +

+

+
o
o

o
o

o

o

o o

o o

x
1st

2nd

3rd

4th

5th

Decision Tree

Decision Trees

• Input: Feature vectors
• Output: Classification of input vector
• Learns by subdividing the data into clusters

with same properties
• Good at determining which features are good

discriminators

Decision Tree

• Classify pattern through sequence of questions
• Easy to interpret

Branches

Leaf nodes

CART

• Classification and Regression Trees (CART)
– General framework for creating decision trees

• Common questions:
1. How many splits at each node?
2. Which property should be tested at node?
3. When should the tree stop?
4. Can “large” trees be pruned (to make smaller)?

• Every non-binary decision can be represented as
combination of binary decisions

1) How Many Splits?

x

x

x
x ≤ -1 x ≥ 1

-1 < x < 1

x ≥ 1

x ≤ -1 x > -1

x < 1

2) Which Property to Test?
• Prefer decisions that lead to simplest tree (Occam’s Razor)

– Want property to split data into “purest” groups possible
– Use impurity measures

• Choose decision at node N that decreases impurity the most

– Maximize

() () ()j
j

j PPNi ωω∑−= 2logImpurity Entropy

Node N
Proportion of patterns at node

N that belong to class ωj

() () () () ()[]RLLL NiPNiPNiNi ⋅−+⋅−=∆ 1

Impurity of patterns
at node NL

Proportion of patterns
that go out to node NL

N

NL NR

ω1 ω2 ω3 ω4

P(ωi) Low Impurity

ω2ω1 ω3 ω4

P(ωi) High Impurity

Want << i(N)

3) When to Stop Splitting?

• Four different techniques:
1. Continue splitting until training error on validation data is

minimized
2. Below threshold value in impurity reduction
3. Minimize cost function balancing tree size and impurity
4. Test statistical significance of impurity reduction

4) How to Prune Large Trees?

• Methods to determine when to stop splitting may
declare a node a leaf too early

• Alternative: grow tree out entirely (each leaf perfectly
pure) and then prune

• Pruning:
– Work bottom-up
– Compute the increase in impurity if two child nodes linked

to common parent node are eliminated
– Merge if increase is negligible

Lastly Assign Categories to Leaf Nodes

• Simplest approach is to take majority vote of class
labels at leaf node
– Ideally there will be one dominant class

• Potential options when tie occurs:
– Random assignment
– Take into account priors
– Take into account classification risks

• Cost of misdetections or false alarms of categories

Example
TASK: Build decision tree to represent these two data clusters/classes.
(Then can push new “unlabeled” point into tree to determine its class.)

Example – Decision Tree (Matlab)
Mostly Full Tree (nodes must have at least 10 observations to be split)

x < -2.11751 or x ≥ -2.11751

y < -1.14354 or y ≥ - 1.14354

Example – Decision Tree
Slightly Pruned Tree

Example – Decision Tree
Moderately Pruned Tree

Example – Decision Tree
Heavily Pruned Tree

Example – Decision Tree
Mostly Full Tree

Accuracy = 0.9635

Slightly Pruned Tree

Accuracy = 0.9655

Moderately Pruned Tree

Accuracy = 0.9670

Highly Pruned Tree

Accuracy = 0.9165

Results from test data

Overfit to training data

Not enough decisions

Unlabeled test data

Summary

• Unsupervised learning
– K-Means

• Supervised learning
– Training and evaluation
– k-NN

• Majority vote of nearest neighbors in training data

– Decision Trees
• CART

	Artificial Intelligence
	Programming Style Shifts
	Learning
	What is “Learning”?
	What can be Learned?
	Cluster/Grouping Learning Problems
	Cluster/Grouping Learning Problems
	“Unsupervised” Learning��
	K-Means �(“Grouping/Clustering”)
	Slide Number 10
	K-Means – Appropriate Seeding
	K-Means – Appropriate Seeding
	K-Means – Inappropriate Seeding
	K-Means – Inappropriate Seeding
	K-Means – Comments
	K-Means – Uses
	“Supervised” Learning��
	Learning
	“Supervised” Learning
	Supervised Learning
	Supervised Learning Process
	Evaluating Supervised Learning
	Training Classifiers
	Training Classifiers (continued)
	Evaluation
	Evaluation
	k-NN
	k-Nearest Neighbor
	Slide Number 29
	Decision Tree
	Decision Trees
	Decision Tree
	CART
	1) How Many Splits?
	2) Which Property to Test?
	3) When to Stop Splitting?
	4) How to Prune Large Trees?
	Lastly Assign Categories to Leaf Nodes
	Example
	Example – Decision Tree (Matlab)
	Example – Decision Tree
	Example – Decision Tree
	Example – Decision Tree
	Example – Decision Tree
	Summary

