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Why it's not overfitting? -- From Classical Statistics to Modern ML: the Lessons of Deep
Learning - Mikhail Belkin, From Classical Statistics to Modern ML: the Lessons of Deep
Learning, From Classical Statistics to Modern ML: the Lessons of Deep Learning,
https://www.youtube.com/watch?v=5-Kqb80h9rk&feature=youtu.be

OR https://www.youtube.com/watch?v=JS-BI36aVPs&t=747s

Mikhail (Misha) Belkin, https://scholar.google.com/citations?
hl=en&user=lwd9DdkAAAAJ&view_op=list works&sortby=pubdate

» VC dimension: A measure of the capacity of a space of function that can be
learned by a statistical classification algorithm. It's defined as the cardinality of the
largest set of points that the algorithm can shatter, which was originally defiend by
Vladimir Vapnik.

The ERM/SRM theory of learning
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o ML: the goal of Machine Learning is to find a function that minimize the loss
in the future (Or the expected loss over prob dist under some assumption).
o ERM: the goal of Empirical risk minimization is to find a fucntion over a class
of function that minimize the loss over the training data
* How should we build a connection between Two?
o According to Vapnik: 1) Uniform Law of Large number. 2)Capacity control
i. uniform Law of large number says that the ERM is approximately equal
to the expected loss, as the training sample set goes infinitely, so it allow
us to use the the empirical loss function to approximate the expected
loss function
ii. Capacity control: say there are H (A set of function) contrains a funciton
that approximate the goal of Machine Learning function (The target
funct f*), so the target function must be with this set H.

. The theory of induction is based on the uniform law of large numbers.
= | 2. Effective methods of inference must include capacity control.

V. Vapnik, Statistical Learning Theory, 1998

o You can see your ERM solution is nearly optimal (Close to expected loss)
« (D+(2) = Eynseen data L(I};leM(x):Y) & Eunseen data L(f*(X),y)

» Uniform laws of large numbers (Aka WYSIWG bounds, "what you see is what you
get"), e.g. ve-dim, fat shattering, rademacher, covering number, margin...



Maodel or function complexity, e.g.,VC,
margin or ||f|lg¢

Expected risk: Empirical risk:
what you get what you see

ECL(fermrY)) < = L (ferm(x1), yi) + O* -%

= In the left: the expected risk, (what you get, in the future), this loss never
can goes zero, for the fact you have a lot of randomization in your test

data.
= Inthe right: 1)the Empirical risk (What you see while you are training the

data) <== Defind by Law of large number, can possibly get to zero+ 2)
capacity term (e.g. VC, margin)
= ==> S0 basically the "capacity control" defined our generalizatio bound
==> How well our model could possibly get trained.
e Capacity control

6.1 THE SCHEME OF THE STRUCTURAL RISK MINIMIZATION INDUCTION PRINCIPLE 223
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FIGURE 6.2, The bound on the risk Is the sum of the empirical risk and of the conlidence
Interval. The emplrical risk is docreased with the index of element of the structure, while
tho confidonce Interval Is Increasoed. The smallest bound of the risk Is achleved on some
appropriate eloment of the siructure,
V.Vapnik, Statistical Learning Theory, 1998

o U-shaped generalization curve
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o In the left side is underfitting, and right side is overfitting, and our



goal is to find this "sweet spot"

o However, a model with zero training error is overfitting to the
training data and will typically generalize poorly.

o zero training error is also known as Interpolation, in mathmatical
term!

» Does interpolation overfit?
o There is a paper, prove that you can interpolation and still have a good test
result!

Model or function complexity, e.g,VC or || f || 3¢
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o Review again:

* |n the left: the expected risk, (what you get, in the future), this
loss never can goes zero, for the fact you have a lot of
randomization in your test data.

* |n the right: 1)the Empirical risk (What you see while you are
training the data) <== Defind by Law of large number, can
possibly get to zero+ 2)capacity term (e.g. VC, margin)

» ==> S0 basically the "capacity control" defined our
generalizatio bound ==> How well our model could possibly
get trained.

 Interpolation doesn't overfit event for very noisy data:

what kind of generalization bound could work here?
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Test classification error, %

Label noise, %
» Randomization: take 10% of the data and assign random labels
= Green line: 50%, the best you can possibly do, based on Bayes optimal
classifier.
» Random guess: is 90%, because the dataset has 10 classes.
» Red line: a kernel machine train to have zero loss on the noisy data.
However, the result doesn't seem to overfit.



* why bounds fail?
correct ‘( ) nontrivial

C
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= There are two problem:

1. The constant in O*needs to be exact. There are
no known bounds like that.

2. Conceptually, how would the quantity c¢(n)

“know” about the Bayes risk?

 Interpolation is best practice for deep learning:
o The best way to solve the problem from practical standpoint is you build a
very big system .... Basically you want to make sure you hit the zero training
error (Interpolation)

Interpolation is best practice for deep learning

From Ruslan Salakhutdinov’s tutorial (Simons Institute, 2017):

The best way to solve the problem from
practical standpoint 1s you build a very big
system .. basically you want to make sure you
hit the zero training error.

Yann Lecun (IPAM talk, 2018):

peep learning breaks some basic rules of statistics.

e The modern ML: The key lesson
The new theory of induction cannot be
o based on uniform laws of large
numbers with capacity control.

» So the generalization theory will be helpful for understanding interpolation?
o What theoretical analyses do we have?



»  VC-dimension/Rademacher complexity/covering/paC-Bayes/margin bounds. uniform
»  Cannot deal with interpolated classifiers ofien Bayes risk is non-zero. bounds :
»  Generalization gap cannot be bound wl empirical risk is zero. - '//
training loss
»  Algorithmic stability, »

expected loss

»  Does not apply when empirfical risk is zero, expected risk nonzero.

T 11
» Regularization-wyfie analyses (Tikhonov, early stopping/sSGD, etc.) ‘- zgi:igey

»  Diverge a -0 for fixed n.

; ; oracle bounds
» Classical smoothing methods (nearest neighbors, Nadaraya-watson).

»  Most classical analyses do not support interpolation. J‘ expected loss
3

»  But 1-NN! (Also Hilbert regression Scheme, [Devroye, et al. 98)) optimal loss

o 1-NN
= Analysis doesn't based on complexity bounds
= Estimating expected loss, not the generalization gap

l-nearest neighbor classifier is very suggestive.

Interpolating classifier with a non-trivial (sharp!)
performance guarantee.

Twice the Bayes risk [Cover, Hart, 67].

» Analysis not based on complexity bounds.
» Estimating expected loss, not the generalization gap.

o Could we do better than 1-NN? ==> Yes
= Interpolated k-NN schemes, the data is randomly generated from a linear
function plus some noise
= The scheme, the red line model that we approximated, the more data you
have the model will get better, and this result will get better in high
dimenion. So, in this 1-D example you might feel it's terrible, but it's
getting better in high dimension.
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Theorem:
weighted (interpolated) k-nn schemes with certain singular kernels
are consistent (converge to Bayes optimal) for classification in
any dimension.
Moreover, statistically (minimax) optimal for regression in any
dimension.
[B., Hsu, Mitra, NeuriPS 18] [B., Rakhlin, Tsybakov, AIStats 19]
o Review

This talk so far:

A. Empirical effectiveness of interpolation.

8. Theory of interpolation cannot be based on uniform bounds.

¢. Statistical validity of interpolating nearest neighbor methods.

Yet, there is a mismatch between A and C.

Methods we analyze are different from those used in practice.

o The New question we want to consider now:

1.

Dependence of generalization on model complexity?

2. What is the role of optimization?
» "Double descent" risk curve: Reconciling modern machine-learning practice and the
classical bias—variance trade-off,
https://www.pnas.org/content/pnas/116/32/15849.full.pdf

Risk

classical risk curve New “double descent” risk curve
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Complexity of H: can be thinks as the number of parameters

What is the training end in Classical curve: It ends when our training get
to error, or below certain tolerance

The complexity of model can be choose arbitraily, you can just add more
and more neurons, and can continuely grow the model, to have more




complicated model. As the model become more complicated, the zag-
zig line will start to converge to something that is smooth, and getting
better!

= |t's true that, if we keep growing the complexity of model, the test risk

curve will start to decrease again, and_many people has observed this!
Fully connected network Random Forest L2-boost
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[B., Hsu, Ma, Mandal, 18]

o Let's getting more granularity:

= Looking at the which also decribed in following

i “Advani, Saxe, 2017 W gpigler, et al, 2018



Random Fourier networks

Random Fourier Features networks [Rahimi, Recht, NIPS 2007]

N s
hn,N (x) - Z a] elﬂ(W,‘,x)

j:

Neural network with one hidden layer, cos non-linearity, fixed
first layer weights. Hidden layer of size N. Data size n.

Key property:

¥n1hnw(x):= kernel machine
- 00

= Letlook at this more closely:
[}

what is the mechanism?

TIMIT, Zero-one loss

L N = o --infinite neural net
z 7 RFF Test loss -
' -
= kernel machine
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e ERM and Interpolation:

o We choose a baseline function, and try to minimize the norm over the
subspace of function, which fits the constraints exactly! However, we never
actually do this explicitly, at least not at neural networks. The minimization of
the norm is hidden somehow, within the dynamics of SGD.



Classical ERM:

: i .
ferm = @rgmin —Z L(f(x;), vi)
training data

fEH n

Modern ML/interpolation:

fme =arg min |IfIl
Vi f(x))=Yi

(Norm hidden within the dynamics of SGD)

e Framework for modern ML
o Think of form of Occam's razor: which is based on inductive bias, Maximum
smoothness subject to interpolating(or exactly fitting) the datal!
o There are three way to increase the smoothness:
1. Explicitly: minimum functional norm solution
1) Exact: Kernel machine
2) Approximate: RFF, ReLU features
2. Implicit: SGD/opimization (Neural Networks)
3. Averaging (Bagging, L2-Boost)
 [35:08]New understanding of overfitting
o Previous: while the training loss is low, we must be overfitting, and therefore
we should decrease the number of parameter, such introduce regularization,
o Now: there are two way to avoid the overfitting. 1)The classical way is to
reduce the number of parameter. 2)The modern ML is to increase the number
of parameter, moving to the right. It's counterintuitive, but



The landscape of generalization
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4 Classical Overfitting

Modern ML. Interpolation
regime. Based on
inductive biases/functional
smoothness. First analyses
starting to appear.

Here be dragons.
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Test loss
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* Classical Optimization(Under-parametrized)
o Many local minima
o SGD(Fixed step size) doesn't converge

Interpolation
threshold

e Modern Optimization(Interpolation/over-parametrized)
1. Every local minimum is global (for networks wide enough)
[Li, Ding, Sun, 18], [Yu, Chen, 95]

>

# parameters

2. Local methods converge to global optima

[kawaguchi, 16] [Soheil, et al, 16] [Bartlett, et al, 17]
[Soltanolkotabi, et al, 17, 18] [pu, et al, 19] ..

3. sSmall batch SGD (fixed step size) converges as fast as GD

per iteration.

[Ma, Bassily, B., ICML 18] [Bassily, ma, B., 18]



